Visible to the public Biblio

Filters: Author is Salehi, Mohsen Amini  [Clear All Filters]
2022-05-09
Zobaed, Sakib M, Salehi, Mohsen Amini, Buyya, Rajkumar.  2021.  SAED: Edge-Based Intelligence for Privacy-Preserving Enterprise Search on the Cloud. 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :366–375.
Cloud-based enterprise search services (e.g., AWS Kendra) have been entrancing big data owners by offering convenient and real-time search solutions to them. However, the problem is that individuals and organizations possessing confidential big data are hesitant to embrace such services due to valid data privacy concerns. In addition, to offer an intelligent search, these services access the user’s search history that further jeopardizes his/her privacy. To overcome the privacy problem, the main idea of this research is to separate the intelligence aspect of the search from its pattern matching aspect. According to this idea, the search intelligence is provided by an on-premises edge tier and the shared cloud tier only serves as an exhaustive pattern matching search utility. We propose Smartness at Edge (SAED mechanism that offers intelligence in the form of semantic and personalized search at the edge tier while maintaining privacy of the search on the cloud tier. At the edge tier, SAED uses a knowledge-based lexical database to expand the query and cover its semantics. SAED personalizes the search via an RNN model that can learn the user’s interest. A word embedding model is used to retrieve documents based on their semantic relevance to the search query. SAED is generic and can be plugged into existing enterprise search systems and enable them to offer intelligent and privacy-preserving search without enforcing any change on them. Evaluation results on two enterprise search systems under real settings and verified by human users demonstrate that SAED can improve the relevancy of the retrieved results by on average ≈24% for plain-text and ≈75% for encrypted generic datasets.
2020-08-28
Zobaed, S.M., ahmad, sahan, Gottumukkala, Raju, Salehi, Mohsen Amini.  2019.  ClustCrypt: Privacy-Preserving Clustering of Unstructured Big Data in the Cloud. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :609—616.
Security and confidentiality of big data stored in the cloud are important concerns for many organizations to adopt cloud services. One common approach to address the concerns is client-side encryption where data is encrypted on the client machine before being stored in the cloud. Having encrypted data in the cloud, however, limits the ability of data clustering, which is a crucial part of many data analytics applications, such as search systems. To overcome the limitation, in this paper, we present an approach named ClustCrypt for efficient topic-based clustering of encrypted unstructured big data in the cloud. ClustCrypt dynamically estimates the optimal number of clusters based on the statistical characteristics of encrypted data. It also provides clustering approach for encrypted data. We deploy ClustCrypt within the context of a secure cloud-based semantic search system (S3BD). Experimental results obtained from evaluating ClustCrypt on three datasets demonstrate on average 60% improvement on clusters' coherency. ClustCrypt also decreases the search-time overhead by up to 78% and increases the accuracy of search results by up to 35%.
2020-07-13
ahmad, sahan, Zobaed, SM, Gottumukkala, Raju, Salehi, Mohsen Amini.  2019.  Edge Computing for User-Centric Secure Search on Cloud-Based Encrypted Big Data. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :662–669.

Cloud service providers offer a low-cost and convenient solution to host unstructured data. However, cloud services act as third-party solutions and do not provide control of the data to users. This has raised security and privacy concerns for many organizations (users) with sensitive data to utilize cloud-based solutions. User-side encryption can potentially address these concerns by establishing user-centric cloud services and granting data control to the user. Nonetheless, user-side encryption limits the ability to process (e.g., search) encrypted data on the cloud. Accordingly, in this research, we provide a framework that enables processing (in particular, searching) of encrypted multiorganizational (i.e., multi-source) big data without revealing the data to cloud provider. Our framework leverages locality feature of edge computing to offer a user-centric search ability in a realtime manner. In particular, the edge system intelligently predicts the user's search pattern and prunes the multi-source big data search space to reduce the search time. The pruning system is based on efficient sampling from the clustered big dataset on the cloud. For each cluster, the pruning system dynamically samples appropriate number of terms based on the user's search tendency, so that the cluster is optimally represented. We developed a prototype of a user-centric search system and evaluated it against multiple datasets. Experimental results demonstrate 27% improvement in the pruning quality and search accuracy.