Biblio
Cyber physical system (CPS) is often deployed at safety-critical key infrastructures and fields, fault tolerance policies are extensively applied in CPS systems to improve its credibility; the same physical backup of hardware redundancy (SPB) technology is frequently used for its simple and reliable implementation. To resolve challenges faced with in simulation test of SPB-CPS, this paper dynamically determines the test resources matched with the CPS scale by using the adaptive allocation policies, establishes the hierarchical models and inter-layer message transmission mechanism. Meanwhile, the collaborative simulation time sequence push strategy and the node activity test mechanism based on the sliding window are designed in this paper to improve execution efficiency of the simulation test. In order to validate effectiveness of the method proposed in this paper, we successfully built up a fault-tolerant CPS simulation platform. Experiments showed that it can improve the SPB-CPS simulation test efficiency.
CPS is generally complex to study, analyze, and design, as an important means to ensure the correctness of design and implementation of CPS system, simulation test is difficult to fully test, verify and evaluate the components or subsystems in the CPS system due to the inconsistent development progress of the com-ponents or subsystems in the CPS system. To address this prob-lem, we designed a hybrid P2P based collaborative simulation test framework composed of full physical nodes, hardware in the loop(HIL) nodes and full digital nodes to simulate the compo-nents or subsystems in the CPS system of different development progress, based on the framework, we then proposed collabora-tive simulation control strategy comprising sliding window based clock synchronization, dynamic adaptive time advancement and multi-priority task scheduling with preemptive time threshold. Experiments showed that the hybrid collaborative simulation testing method proposed in this paper can fully test CPS more effectively.