Visible to the public Biblio

Filters: Author is Govindarasu, Manimaran  [Clear All Filters]
2023-08-04
Hyder, Burhan, Majerus, Harrison, Sellars, Hayden, Greazel, Jonathan, Strobel, Joseph, Battani, Nicholas, Peng, Stefan, Govindarasu, Manimaran.  2022.  CySec Game: A Framework and Tool for Cyber Risk Assessment and Security Investment Optimization in Critical Infrastructures. 2022 Resilience Week (RWS). :1–6.
Cyber physical system (CPS) Critical infrastructures (CIs) like the power and energy systems are increasingly becoming vulnerable to cyber attacks. Mitigating cyber risks in CIs is one of the key objectives of the design and maintenance of these systems. These CPS CIs commonly use legacy devices for remote monitoring and control where complete upgrades are uneconomical and infeasible. Therefore, risk assessment plays an important role in systematically enumerating and selectively securing vulnerable or high-risk assets through optimal investments in the cybersecurity of the CPS CIs. In this paper, we propose a CPS CI security framework and software tool, CySec Game, to be used by the CI industry and academic researchers to assess cyber risks and to optimally allocate cybersecurity investments to mitigate the risks. This framework uses attack tree, attack-defense tree, and game theory algorithms to identify high-risk targets and suggest optimal investments to mitigate the identified risks. We evaluate the efficacy of the framework using the tool by implementing a smart grid case study that shows accurate analysis and feasible implementation of the framework and the tool in this CPS CI environment.
2022-09-20
Emadi, Hamid, Clanin, Joe, Hyder, Burhan, Khanna, Kush, Govindarasu, Manimaran, Bhattacharya, Sourabh.  2021.  An Efficient Computational Strategy for Cyber-Physical Contingency Analysis in Smart Grids. 2021 IEEE Power & Energy Society General Meeting (PESGM). :1—5.
The increasing penetration of cyber systems into smart grids has resulted in these grids being more vulnerable to cyber physical attacks. The central challenge of higher order cyber-physical contingency analysis is the exponential blow-up of the attack surface due to a large number of attack vectors. This gives rise to computational challenges in devising efficient attack mitigation strategies. However, a system operator can leverage private information about the underlying network to maintain a strategic advantage over an adversary equipped with superior computational capability and situational awareness. In this work, we examine the following scenario: A malicious entity intrudes the cyber-layer of a power network and trips the transmission lines. The objective of the system operator is to deploy security measures in the cyber-layer to minimize the impact of such attacks. Due to budget constraints, the attacker and the system operator have limits on the maximum number of transmission lines they can attack or defend. We model this adversarial interaction as a resource-constrained attacker-defender game. The computational intractability of solving large security games is well known. However, we exploit the approximately modular behaviour of an impact metric known as the disturbance value to arrive at a linear-time algorithm for computing an optimal defense strategy. We validate the efficacy of the proposed strategy against attackers of various capabilities and provide an algorithm for a real-time implementation.
2021-12-02
Ravikumar, Gelli, Nicklaus, Alex, Govindarasu, Manimaran.  2020.  Cyber-Physical Smart Light Control System Integration with Smart Grid Using Zigbee. 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
This paper presents a hardware-in-the-loop cyber-physical system architecture design to monitor and control smart lights connected to the active distribution grid. The architecture uses Zigbee-based (IEEE 802.15.4) wireless sensor networks and publish-subscribe architecture to exchange monitoring and control signals between smart-light actuators (SLAs) and a smart-light central controller (SLCC). Each SLA integrated into a smart light consists of a Zigbee-based endpoint module to send and receive signals to and from the SLCC. The SLCC consists of a Zigbee-based coordinator module, which further exchanges the monitoring and control signals with the active distribution management system over the TCP/IP communication network. The monitoring signals from the SLAs include light status, brightness level, voltage, current, and power data, whereas, the control signals to the SLAs include light intensity, turn ON, turn OFF, standby, and default settings. We have used our existing hardware-in-the-loop (HIL) cyber-physical system (CPS) security SCADA testbed to process signals received from the SLCC and respond suitable control signals based on the smart light schedule requirements, system operation, and active distribution grid dynamic characteristics. We have integrated the proposed cyber-physical smart light control system (CPSLCS) testbed to our existing HIL CPS SCADA testbed. We use the integrated testbed to demonstrate the efficacy of the proposed algorithm by real-time performance and latency between the SLCC and SLAs. The experiments demonstrated significant results by 100% realtime performance and low latency while exchanging data between the SLCC and SLAs.
2021-09-16
Singh, Vivek Kumar, Govindarasu, Manimaran.  2020.  A Novel Architecture for Attack-Resilient Wide-Area Protection and Control System in Smart Grid. 2020 Resilience Week (RWS). :41–47.
Wide-area protection and control (WAPAC) systems are widely applied in the energy management system (EMS) that rely on a wide-area communication network to maintain system stability, security, and reliability. As technology and grid infrastructure evolve to develop more advanced WAPAC applications, however, so do the attack surfaces in the grid infrastructure. This paper presents an attack-resilient system (ARS) for the WAPAC cybersecurity by seamlessly integrating the network intrusion detection system (NIDS) with intrusion mitigation and prevention system (IMPS). In particular, the proposed NIDS utilizes signature and behavior-based rules to detect attack reconnaissance, communication failure, and data integrity attacks. Further, the proposed IMPS applies state transition-based mitigation and prevention strategies to quickly restore the normal grid operation after cyberattacks. As a proof of concept, we validate the proposed generic architecture of ARS by performing experimental case study for wide-area protection scheme (WAPS), one of the critical WAPAC applications, and evaluate the proposed NIDS and IMPS components of ARS in a cyber-physical testbed environment. Our experimental results reveal a promising performance in detecting and mitigating different classes of cyberattacks while supporting an alert visualization dashboard to provide an accurate situational awareness in real-time.
2021-05-25
Ravikumar, Gelli, Hyder, Burhan, Govindarasu, Manimaran.  2020.  Next-Generation CPS Testbed-based Grid Exercise - Synthetic Grid, Attack, and Defense Modeling. 2020 Resilience Week (RWS). :92—98.
Quasi-Realistic cyber-physical system (QR-CPS) testbed architecture and operational environment are critical for testing and validating various cyber attack-defense algorithms for the wide-area resilient power systems. These QR-CPS testbed environments provide a realistic platform for conducting the Grid Exercise (GridEx), CPS security training, and attack-defense exercise at a broader scale for the cybersecurity of Energy Delivery Systems. The NERC has established a tabletop based GridEx platform for the North American power utilities to demonstrate how they would respond to and recover from cyber threats and incidents. The NERC-GridEx is a bi-annual activity with tabletop attack injects and incidence response management. There is a significant need to build a testbed-based hands-on GridEx for the utilities by leveraging the CPS testbeds, which imitates the pragmatic CPS grid environment. We propose a CPS testbed-based Quasi-Realistic Grid Exercise (QR-GridEx), which is a model after the NERC's tabletop GridEx. We have designed the CPS testbed-based QR-GridEx into two parts. Part-I focuses on the modeling of synthetic grid models for the utilities, including SCADA and WAMS communications, and attack-and-defense software systems; and the Part-II focuses on the incident response management and risk-based CPS grid investment strategies. This paper presents the Part-I of the CPS testbed-based QRGridEx, which includes modeling of the synthetic grid models in the real-time digital simulator, stealthy, and coordinated cyberattack vectors, and integration of intrusion/anomaly detection systems. We have used our existing HIL CPS security testbed to demonstrate the testbed-based QR-GridEx for a Texas-2000 bus US synthetic grid model and the IEEE-39 bus grid models. The experiments demonstrated significant results by 100% real-time performance with zero overruns for grid impact characteristics against stealthy and coordinated cyberattack vectors.
Ravikumar, Gelli, Hyder, Burhan, Govindarasu, Manimaran.  2020.  Efficient Modeling of IEC-61850 Logical Nodes in IEDs for Scalability in CPS Security Testbed. 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T D). :1–5.

Though the deep penetration of cyber systems across the smart grid sub-domains enrich the operation of the wide-area protection, control, and smart grid applications, the stochastic nature of cyber-attacks by adversaries inflict their performance and the system operation. Various hardware-in-the-loop (HIL) cyber-physical system (CPS) testbeds have attempted to evaluate the cyberattack dynamics and power system perturbations for robust wide-area protection algorithms. However, physical resource constraints and modular integration designs have been significant barriers while modeling large-scale grid models (scalability) and have limited many of the CPS testbeds to either small-scale HIL environment or complete simulation environments. This paper proposes a meticulous design and efficient modeling of IEC-61850 logical nodes in physical relays to simulate large-scale grid models in a HIL real-time digital simulator environment integrated with industry-grade hardware and software systems for wide-area power system applications. The proposed meticulous design includes multi-breaker emulation in the physical relays, which extends the capacity of a physical relay to accommodate more number of CPS interfaces in the HIL CPS security testbed environment. We have used our existing HIL CPS security testbed to demonstrate scalability by the real-time performance of ten simultaneous IEEE-39 CPS grid models. The experiments demonstrated significant results by 100% real-time performance with zero overruns, and low latency while receiving and executing control signals from physical SEL relays via IEC-61850 and DNP-3 protocols to real-time digital simulator, substation remote terminal unit (RTU) software and supervisory control and data acquisition (SCADA) software at control center.

2020-10-06
Ravikumar, Gelli, Hyder, Burhan, Govindarasu, Manimaran.  2019.  Efficient Modeling of HIL Multi-Grid System for Scalability Concurrency in CPS Security Testbed. 2019 North American Power Symposium (NAPS). :1—6.
Cyber-event-triggered power grid blackout compels utility operators to intensify cyber-aware and physics-constrained recovery and restoration process. Recently, coordinated cyber attacks on the Ukrainian grid witnessed such a cyber-event-triggered power system blackout. Various cyber-physical system (CPS) testbeds have attempted with multitude designs to analyze such interdependent events and evaluate remedy measures. However, resource constraints and modular integration designs have been significant barriers while modeling large-scale grid models (scalability) and multi-grid isolated models (concurrency) under a single real-time execution environment for the hardware-in-the-loop (HIL) CPS security testbeds. This paper proposes a meticulous design and effective modeling for simulating large-scale grid models and multi-grid isolated models in a HIL realtime digital simulator environment integrated with industry-grade hardware and software systems. We have used our existing HIL CPS security testbed to demonstrate scalability by the realtime performance of a Texas-2000 bus US synthetic grid model and concurrency by the real-time performance of simultaneous ten IEEE-39 bus grid models and an IEEE-118 bus grid model. The experiments demonstrated significant results by 100% realtime performance with zero overruns, low latency while receiving and executing control signals from SEL Relays via IEC-61850 protocol and low latency while computing and transmitting grid data streams including stability measures via IEEE C37.118 synchrophasor data protocol to SEL Phasor Data Concentrators.
2020-07-16
Singh, Vivek Kumar, Govindarasu, Manimaran, Porschet, Donald, Shaffer, Edward, Berman, Morris.  2019.  Distributed Power System Simulation using Cyber-Physical Testbed Federation: Architecture, Modeling, and Evaluation. 2019 Resilience Week (RWS). 1:26—32.

Development of an attack-resilient smart grid depends heavily on the availability of a representative environment, such as a Cyber Physical Security (CPS) testbed, to accelerate the transition of state-of-the-art research work to industry deployment by experimental testing and validation. There is an ongoing initiative to develop an interconnected federated testbed to build advanced computing systems and integrated data sharing networks. In this paper, we present a distributed simulation for power system using federated testbed in the context of Wide Area Monitoring System (WAMS) cyber-physical security. In particular, we have applied the transmission line modeling (TLM) technique to split a first order two-bus system into two subsystems: source and load subsystems, which are running in geographically dispersed simulators, while exchanging system variables over the internet. We have leveraged the resources available at Iowa State University's Power Cyber Laboratory (ISU PCL) and the US Army Research Laboratory (US ARL) to perform the distributed simulation, emulate substation and control center networks, and further implement a data integrity attack and physical disturbances targeting WAMS application. Our experimental results reveal the computed wide-area network latency; and model validation errors. Further, we also discuss the high-level conceptual architecture, inspired by NASPInet, necessary for developing the CPS testbed federation.