Visible to the public Biblio

Filters: Author is Zhang, Lijun  [Clear All Filters]
2023-05-26
Wang, Changjiang, Yu, Chutian, Yin, Xunhu, Zhang, Lijun, Yuan, Xiang, Fan, Mingxia.  2022.  An Optimal Planning Model for Cyber-physical Active Distribution System Considering the Reliability Requirements. 2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES). :1476—1480.
Since the cyber and physical layers in the distribution system are deeply integrated, the traditional distribution system has gradually developed into the cyber-physical distribution system (CPDS), and the failures of the cyber layer will affect the reliable and safe operation of the whole distribution system. Therefore, this paper proposes an CPDS planning method considering the reliability of the cyber-physical system. First, the reliability evaluation model of CPDS is proposed. Specifically, the functional reliability model of the cyber layer is introduced, based on which the physical equipment reliability model is further investigated. Second, an optimal planning model of CPDS considering cyber-physical random failures is developed, which is solved using the Monte Carlo Simulation technique. The proposed model is tested on the modified IEEE 33-node distribution system, and the results demonstrate the effectiveness of the proposed method.
2021-11-29
Tan, Cheng, Zhang, Lijun, Bao, Liang.  2020.  A Deep Exploration of BitLocker Encryption and Security Analysis. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :1070–1074.
Due to the popularity of Windows system, BitLocker is widely used as a built-in disk encryption tool. As a commercial application, the design of BitLocker has to consider a capability of disaster recovery, which helps a user to recover data stored on encrypted disk when a regular access is not available. In this case, it will inevitably lead to some security risks when using BitLocker. We have a deep exploration of BitLocker encryption mechanism in this paper. We present the decryption method of encrypted VMK in case of system partition encryption and non-system partition encryption, respectively. VMK is the core key in BitLocker, with which the encrypted partition or the entire disk can be further decrypted. As for security analysis on BitLocker, we firstly make a difficulty analysis of brute force cracking on BitLocker keys, and then we analyze a possible threat caused by key theft. Based on this, we propose a few countermeasures about BitLocker usage. Additionally, we give some suggestions about security enhancement of BitLocker encryption.
2020-07-20
Pengcheng, Li, Yi, Jinfeng, Zhang, Lijun.  2018.  Query-Efficient Black-Box Attack by Active Learning. 2018 IEEE International Conference on Data Mining (ICDM). :1200–1205.
Deep neural network (DNN) as a popular machine learning model is found to be vulnerable to adversarial attack. This attack constructs adversarial examples by adding small perturbations to the raw input, while appearing unmodified to human eyes but will be misclassified by a well-trained classifier. In this paper, we focus on the black-box attack setting where attackers have almost no access to the underlying models. To conduct black-box attack, a popular approach aims to train a substitute model based on the information queried from the target DNN. The substitute model can then be attacked using existing white-box attack approaches, and the generated adversarial examples will be used to attack the target DNN. Despite its encouraging results, this approach suffers from poor query efficiency, i.e., attackers usually needs to query a huge amount of times to collect enough information for training an accurate substitute model. To this end, we first utilize state-of-the-art white-box attack methods to generate samples for querying, and then introduce an active learning strategy to significantly reduce the number of queries needed. Besides, we also propose a diversity criterion to avoid the sampling bias. Our extensive experimental results on MNIST and CIFAR-10 show that the proposed method can reduce more than 90% of queries while preserve attacking success rates and obtain an accurate substitute model which is more than 85% similar with the target oracle.