Visible to the public Biblio

Filters: Author is Sethia, Divyashikha  [Clear All Filters]
2022-04-19
Sethia, Divyashikha, Sahu, Raj, Yadav, Sandeep, Kumar, Ram.  2021.  Attribute Revocation in ECC-Based CP-ABE Scheme for Lightweight Resource-Constrained Devices. 2021 International Conference on Communication, Control and Information Sciences (ICCISc). 1:1–6.
Ciphertext Policy Attribute-Based Encryption (CPABE) has gained popularity in the research area among the many proposed security models for providing fine-grained access control of data. Lightweight ECC-based CP-ABE schemes can provide feasible selective sharing from resource-constrained devices. However, the existing schemes lack support for a complete revocation mechanism at the user and attribute levels. We propose a novel scheme called Ecc Proxy based Scalable Attribute Revocation (EPSAR-CP-ABE) scheme. It extends an existing ECC-based CP-ABE scheme for lightweight IoT and smart-card devices to implement scalable attribute revocation. The scheme does not require re-distribution of secret keys and re-encryption of ciphertext. It uses a proxy server to furnish a proxy component for decryption. The dependency of the proposed scheme is minimal on the proxy server compared to the other related schemes. The storage and computational overhead due to the attribute revocation feature are negligible. Hence, the proposed EPSAR-CP-ABE scheme can be deployed practically for resource-constrained devices.
2020-07-24
Sethia, Divyashikha, Shakya, Anadi, Aggarwal, Ritik, Bhayana, Saksham.  2019.  Constant Size CP-ABE with Scalable Revocation for Resource-Constrained IoT Devices. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0951—0957.

Users can directly access and share information from portable devices such as a smartphone or an Internet of Things (IoT) device. However, to prevent them from becoming victims to launch cyber attacks, they must allow selective sharing based on roles of the users such as with the Ciphertext-Policy Attribute Encryption (CP-ABE) scheme. However, to match the resource constraints, the scheme must be efficient for storage. It must also protect the device from malicious users as well as allow uninterrupted access to valid users. This paper presents the CCA secure PROxy-based Scalable Revocation for Constant Cipher-text (C-PROSRCC) scheme, which provides scalable revocation for a constant ciphertext length CP-ABE scheme. The scheme has a constant number of pairings and computations. It can also revoke any number of users and does not require re-encryption or redistribution of keys. We have successfully implemented the C-PROSRCC scheme. The qualitative and quantitative comparison with related schemes indicates that C-PROSRCC performs better with acceptable overheads. C-PROSRCC is Chosen Ciphertext Attack (CCA) secure. We also present a case study to demonstrate the use of C-PROSRCC for mobile-based selective sharing of a family car.