Visible to the public Biblio

Filters: Author is Yu, Shui  [Clear All Filters]
2023-06-22
Sun, Yanchao, Han, Yuanfeng, Zhang, Yue, Chen, Mingsong, Yu, Shui, Xu, Yimin.  2022.  DDoS Attack Detection Combining Time Series-based Multi-dimensional Sketch and Machine Learning. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :01–06.
Machine learning-based DDoS attack detection methods are mostly implemented at the packet level with expensive computational time costs, and the space cost of those sketch-based detection methods is uncertain. This paper proposes a two-stage DDoS attack detection algorithm combining time series-based multi-dimensional sketch and machine learning technologies. Besides packet numbers, total lengths, and protocols, we construct the time series-based multi-dimensional sketch with limited space cost by storing elephant flow information with the Boyer-Moore voting algorithm and hash index. For the first stage of detection, we adopt CNN to generate sketch-level DDoS attack detection results from the time series-based multi-dimensional sketch. For the sketch with potential DDoS attacks, we use RNN with flow information extracted from the sketch to implement flow-level DDoS attack detection in the second stage. Experimental results show that not only is the detection accuracy of our proposed method much close to that of packet-level DDoS attack detection methods based on machine learning, but also the computational time cost of our method is much smaller with regard to the number of machine learning operations.
ISSN: 2576-8565
2022-04-26
Shi, Jibo, Lin, Yun, Zhang, Zherui, Yu, Shui.  2021.  A Hybrid Intrusion Detection System Based on Machine Learning under Differential Privacy Protection. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). :1–6.

With the development of network, network security has become a topic of increasing concern. Recent years, machine learning technology has become an effective means of network intrusion detection. However, machine learning technology requires a large amount of data for training, and training data often contains privacy information, which brings a great risk of privacy leakage. At present, there are few researches on data privacy protection in the field of intrusion detection. Regarding the issue of privacy and security, we combine differential privacy and machine learning algorithms, including One-class Support Vector Machine (OCSVM) and Local Outlier Factor(LOF), to propose an hybrid intrusion detection system (IDS) with privacy protection. We add Laplacian noise to the original network intrusion detection data set to get differential privacy data sets with different privacy budgets, and proposed a hybrid IDS model based on machine learning to verify their utility. Experiments show that while protecting data privacy, the hybrid IDS can achieve detection accuracy comparable to traditional machine learning algorithms.

2021-10-12
Zhao, Haojun, Lin, Yun, Gao, Song, Yu, Shui.  2020.  Evaluating and Improving Adversarial Attacks on DNN-Based Modulation Recognition. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–5.
The discovery of adversarial examples poses a serious risk to the deep neural networks (DNN). By adding a subtle perturbation that is imperceptible to the human eye, a well-behaved DNN model can be easily fooled and completely change the prediction categories of the input samples. However, research on adversarial attacks in the field of modulation recognition mainly focuses on increasing the prediction error of the classifier, while ignores the importance of decreasing the perceptual invisibility of attack. Aiming at the task of DNNbased modulation recognition, this study designs the Fitting Difference as a metric to measure the perturbed waveforms and proposes a new method: the Nesterov Adam Iterative Method to generate adversarial examples. We show that the proposed algorithm not only exerts excellent white-box attacks but also can initiate attacks on a black-box model. Moreover, our method decreases the waveform perceptual invisibility of attacks to a certain degree, thereby reducing the risk of an attack being detected.
2020-08-13
Nosouhi, Mohammad Reza, Yu, Shui, Sood, Keshav, Grobler, Marthie.  2019.  HSDC–Net: Secure Anonymous Messaging in Online Social Networks. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :350—357.
Hiding contents of users' messages has been successfully addressed before, while anonymization of message senders remains a challenge since users do not usually trust ISPs and messaging application providers. To resolve this challenge, several solutions have been proposed so far. Among them, the Dining Cryptographers network protocol (DC-net) provides the strongest anonymity guarantees. However, DC-net suffers from two critical issues that makes it impractical, i.e., (1) collision possibility and (2) vulnerability against disruptions. Apart from that, we noticed a third critical issue during our investigation. (3) DC-net users can be deanonymized after they publish at least three messages. We name this problem the short stability issue and prove that anonymity is provided only for a few cycles of message publishing. As far as we know, this problem has not been identified in the previous research works. In this paper, we propose Harmonized and Stable DC-net (HSDC-net), a self-organizing protocol for anonymous communications. In our protocol design, we first resolve the short stability issue and obtain SDC-net, a stable extension of DC-net. Then, we integrate the Slot Reservation and Disruption Management sub-protocols into SDC-net to overcome the collision and security issues, respectively. The obtained HSDC-net protocol can also be integrated into blockchain-based cryptocurrencies (e.g. Bitcoin) to mix multiple transactions (belonging to different users) into a single transaction in such a way that the source of each payment is unknown. This preserves privacy of blockchain users. Our prototype implementation shows that HSDC-net achieves low latencies that makes it a practical protocol.