Visible to the public Biblio

Filters: Author is NING, Baifeng  [Clear All Filters]
2021-12-20
NING, Baifeng, Xiao, Liang.  2021.  Defense Against Advanced Persistent Threats in Smart Grids: A Reinforcement Learning Approach. 2021 40th Chinese Control Conference (CCC). :8598–8603.
In smart girds, supervisory control and data acquisition (SCADA) systems have to protect data from advanced persistent threats (APTs), which exploit vulnerabilities of the power infrastructures to launch stealthy and targeted attacks. In this paper, we propose a reinforcement learning-based APT defense scheme for the control center to choose the detection interval and the number of Central Processing Units (CPUs) allocated to the data concentrators based on the data priority, the size of the collected meter data, the history detection delay, the previous number of allocated CPUs, and the size of the labeled compromised meter data without the knowledge of the attack interval and attack CPU allocation model. The proposed scheme combines deep learning and policy-gradient based actor-critic algorithm to accelerate the optimization speed at the control center, where an actor network uses the softmax distribution to choose the APT defense policy and the critic network updates the actor network weights to improve the computational performance. The advantage function is applied to reduce the variance of the policy gradient. Simulation results show that our proposed scheme has a performance gain over the benchmarks in terms of the detection delay, data protection level, and utility.
2020-08-24
LV, Zhining, HU, Ziheng, NING, Baifeng, DING, Lifu, Yan, Gangfeng, SHI, Xiasheng.  2019.  Non-intrusive Runtime Monitoring for Power System Intelligent Terminal Based on Improved Deep Belief Networks (I-DBN). 2019 4th International Conference on Power and Renewable Energy (ICPRE). :361–365.
Power system intelligent terminal equipment is widely used in real-time monitoring, data acquisition, power management, power distribution and other tasks of smart grid. The power system intelligent terminal can obtain various information of users and power companies in the power grid, but there is still a lack of protection means for the connection and communication process of the terminal components. In this paper, a novel method based on improved deep belief network(IDBN) is proposed to accomplish the business-level security monitoring and attack detection of power system terminal. A non-intrusive business-level monitoring platform for power system terminals is established, which uses energy metering intelligent terminals as an example for non-intrusive data collection. Based on this platform, the I-DBN extracts the spatial and temporal attack characteristics of the external monitoring data of the system. Some fault conditions and cyber attacks of the model have been simulated to demonstrate the effectiveness of the proposed detection method and the results show excellent performance. The method and platform proposed in this paper can be extended to other services in the power industry, providing a theoretical basis and implementation method for realizing the security monitoring of power system intelligent terminals from the business level.