Visible to the public Biblio

Filters: Author is Kumar, Neeraj  [Clear All Filters]
2023-01-06
Sharma, Himanshu, Kumar, Neeraj, Tekchandani, Raj Kumar, Mohammad, Nazeeruddin.  2022.  Deep Learning enabled Channel Secrecy Codes for Physical Layer Security of UAVs in 5G and beyond Networks. ICC 2022 - IEEE International Conference on Communications. :1—6.

Unmanned Aerial Vehicles (UAVs) are drawing enormous attention in both commercial and military applications to facilitate dynamic wireless communications and deliver seamless connectivity due to their flexible deployment, inherent line-of-sight (LOS) air-to-ground (A2G) channels, and high mobility. These advantages, however, render UAV-enabled wireless communication systems susceptible to eavesdropping attempts. Hence, there is a strong need to protect the wireless channel through which most of the UAV-enabled applications share data with each other. There exist various error correction techniques such as Low Density Parity Check (LDPC), polar codes that provide safe and reliable data transmission by exploiting the physical layer but require high transmission power. Also, the security gap achieved by these error-correction techniques must be reduced to improve the security level. In this paper, we present deep learning (DL) enabled punctured LDPC codes to provide secure and reliable transmission of data for UAVs through the Additive White Gaussian Noise (AWGN) channel irrespective of the computational power and channel state information (CSI) of the Eavesdropper. Numerical result analysis shows that the proposed scheme reduces the Bit Error Rate (BER) at Bob effectively as compared to Eve and the Signal to Noise Ratio (SNR) per bit value of 3.5 dB is achieved at the maximum threshold value of BER. Also, the security gap is reduced by 47.22 % as compared to conventional LDPC codes.

2021-05-20
Dua, Amit, Barpanda, Siddharth Sekhar, Kumar, Neeraj, Tanwar, Sudeep.  2020.  Trustful: A Decentralized Public Key Infrastructure and Identity Management System. 2020 IEEE Globecom Workshops GC Wkshps. :1—6.

Modern Internet TCP uses Secure Sockets Layers (SSL)/Transport Layer Security (TLS) for secure communication, which relies on Public Key Infrastructure (PKIs) to authenticate public keys. Conventional PKI is done by Certification Authorities (CAs), issuing and storing Digital Certificates, which are public keys of users with the users identity. This leads to centralization of authority with the CAs and the storage of CAs being vulnerable and imposes a security concern. There have been instances in the past where CAs have issued rogue certificates or the CAs have been hacked to issue malicious certificates. Motivated from these facts, in this paper, we propose a method (named as Trustful), which aims to build a decentralized PKI using blockchain. Blockchains provide immutable storage in a decentralized manner and allows us to write smart contracts. Ethereum blockchain can be used to build a web of trust model where users can publish attributes, validate attributes about other users by signing them and creating a trust store of users that they trust. Trustful works on the Web-of-Trust (WoT) model and allows for any entity on the network to verify attributes about any other entity through a trusted network. This provides an alternative to the conventional CA-based identity verification model. The proposed model has been implemented and tested for efficacy and known major security attacks.

2020-08-28
Singh, Praveen Kumar, Kumar, Neeraj, Gupta, Bineet Kumar.  2019.  Smart Cards with Biometric Influences: An Enhanced ID Authentication. 2019 International Conference on Cutting-edge Technologies in Engineering (ICon-CuTE). :33—39.
Management of flow of all kinds of objects including human beings signifies their real time monitoring. This paper outlines the advantages accrued out of biometrics integration with Smartcards. It showcases the identity authentication employed through different biometric techniques. Biometric key considerations influencing the essence of this technology in Smartcards have been discussed briefly in this paper. With better accuracy and highly reliable support system this technology finds itself today in widespread deployment. However, there are still some concerns with human interfaces along with important factors in implementations of biometrics with smartcards which have been highlighted in this article. This paper also examines the privacy concerns of users in addressing their apprehensions to protect their confidentiality through biometric encryption and proposes DNA technology as a best possible biometric solution. However, due to inherent limitations of its processing time and an instant requirement of authentication, it has been suggested in the proposed modal to use it with combination of one or more suitable biometric technologies. An instant access has been proposed to the user with limited rights by using biometric technology other than the DNA as a primary source of authentication. DNA has been proposed as secondary source of authentication where only after due sample comparison full access rights to the user will be granted. This paper also aims in highlighting the number of advantages offered by the integration of biometrics with smartcards. It also discusses the need to tackle existing challenges due to restrictions in processing of different biometric technologies by defining certain specific future scopes for improvements in existing biometric technologies mainly against the time taken by it for sample comparisons.