Visible to the public Biblio

Filters: Author is Uhl, Andreas  [Clear All Filters]
2023-03-31
Hofbauer, Heinz, Martínez-Díaz, Yoanna, Luevano, Luis Santiago, Méndez-Vázquez, Heydi, Uhl, Andreas.  2022.  Utilizing CNNs for Cryptanalysis of Selective Biometric Face Sample Encryption. 2022 26th International Conference on Pattern Recognition (ICPR). :892–899.

When storing face biometric samples in accordance with ISO/IEC 19794 as JPEG2000 encoded images, it is necessary to encrypt them for the sake of users’ privacy. Literature suggests selective encryption of JPEG2000 images as fast and efficient method for encryption, the trade-off is that some information is left in plaintext. This could be used by an attacker, in case the encrypted biometric samples are leaked. In this work, we will attempt to utilize a convolutional neural network to perform cryptanalysis of the encryption scheme. That is, we want to assess if there is any information left in plaintext in the selectively encrypted face images which can be used to identify the person. The chosen approach is to train CNNs for biometric face recognition not only with plaintext face samples but additionally conduct a refinement training with partially encrypted data. If this system can successfully utilize encrypted face samples for biometric matching, we can show that the information left in encrypted biometric face samples is information actually usable for biometric recognition.The method works and we can show that a supposedly secure biometric sample still contains identifying information on average over the whole database.

ISSN: 2831-7475

2022-06-14
Hofbauer, Heinz, Martínez-Díaz, Yoanna, Kirchgasser, Simon, Méndez-Vázquez, Heydi, Uhl, Andreas.  2021.  Highly Efficient Protection of Biometric Face Samples with Selective JPEG2000 Encryption. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2580–2584.
When biometric databases grow larger, a security breach or leak can affect millions. In order to protect against such a threat, the use of encryption is a natural choice. However, a biometric identification attempt then requires the decryption of a potential huge database, making a traditional approach potentially unfeasible. The use of selective JPEG2000 encryption can reduce the encryption’s computational load and enable a secure storage of biometric sample data. In this paper we will show that selective encryption of face biometric samples is secure. We analyze various encoding settings of JPEG2000, selective encryption parameters on the "Labeled Faces in the Wild" database and apply several traditional and deep learning based face recognition methods.
2020-08-28
Rieger, Martin, Hämmerle-Uhl, Jutta, Uhl, Andreas.  2019.  Selective Jpeg2000 Encryption of Iris Data: Protecting Sample Data vs. Normalised Texture. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2602—2606.
Biometric system security requires cryptographic protection of sample data under certain circumstances. We assess low complexity selective encryption schemes applied to JPEG2000 compressed iris data by conducting iris recognition on the selectively encrypted data. This paper specifically compares the effects of a recently proposed approach, i.e. applying selective encryption to normalised texture data, to encrypting classical sample data. We assess achieved protection level as well as computational cost of the considered schemes, and particularly highlight the role of segmentation in obtaining surprising results.