Visible to the public Biblio

Filters: Author is Kim, Hyong S.  [Clear All Filters]
2020-09-04
Walck, Matthew, Wang, Ke, Kim, Hyong S..  2019.  TendrilStaller: Block Delay Attack in Bitcoin. 2019 IEEE International Conference on Blockchain (Blockchain). :1—9.
We present TendrilStaller, an eclipse attack targeting at Bitcoin's peer-to-peer network. TendrilStaller enables an adversary to delay block propagation to a victim for 10 minutes. The adversary thus impedes the victim from getting the latest blockchain state. It only takes as few as one Bitcoin full node and two light weight nodes to perform the attack. The light weight nodes perform a subset of the functions of a full Bitcoin node. The attack exploits a recent block propagation protocol introduced in April 2016. The protocol prescribes a Bitcoin node to select 3 neighbors that can send new blocks unsolicited. These neighbors are selected based on their recent performance in providing blocks quickly. The adversary induces the victim to select 3 attack nodes by having attack nodes send valid blocks to the victim more quickly than other neighbors. For this purpose, the adversary deploys a handful of light weight nodes so that the adversary itself receives new blocks faster. The adversary then performs the attack to delay blocks propagated to the victim. We implement the attack on top of current default Bitcoin protocol We deploy the attack nodes in multiple locations around the globe and randomly select victim nodes. Depending on the round-trip time between the adversary and the victim, 50%-85% of the blocks could be delayed to the victim. We further show that the adoption of light weight nodes greatly increases the attack probability by 15% in average. Finally, we propose several countermeasures to mitigate this eclipse attack.