Visible to the public Biblio

Filters: Author is An, Ningyu  [Clear All Filters]
2023-01-20
Liang, Xiao, An, Ningyu, Li, Da, Zhang, Qiang, Wang, Ruimiao.  2022.  A Blockchain and ABAC Based Data Access Control Scheme in Smart Grid. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :52—55.
In the smart grid, the sharing of power data among various energy entities can make the data play a higher value. However, there may be unauthorized access while sharing data, which makes many entities unwilling to share their data to prevent data leakage. Based on blockchain and ABAC (Attribute-based Access Control) technology, this paper proposes an access control scheme, so that users can achieve fine-grained access control of their data when sharing them. The solution uses smart contract to achieve automated and reliable policy evaluation. IPFS (Interplanetary File System) is used for off-chain distributed storage to share the storage pressure of blockchain and guarantee the reliable storage of data. At the same time, all processes in the system are stored in the blockchain, ensuring the accountability of the system. Finally, the experiment proves the feasibility of the proposed scheme.
2020-09-14
Liang, Xiao, Ma, Lixin, An, Ningyu, Jiang, Dongxiao, Li, Chenggang, Chen, Xiaona, Zhao, Lijiao.  2019.  Ontology Based Security Risk Model for Power Terminal Equipment. 2019 12th International Symposium on Computational Intelligence and Design (ISCID). 2:212–216.
IoT based technology are drastically accelerating the informationization development of the power grid system of China that consists of a huge number of power terminal devices interconnected by the network of electric power IoT. However, the networked power terminal equipment oriented cyberspace security has continually become a challenging problem as network attack is continually varying and evolving. In this paper, we concentrate on the security risk of power terminal equipment and their vulnerability based on ATP attack detection and defense. We first analyze the attack mechanism of APT security attack based on power terminal equipment. Based on the analysis of the security and attack of power IoT terminal device, an ontology-based knowledge representation method of power terminal device and its vulnerability is proposed.