Visible to the public Biblio

Filters: Author is Zhang, Xuejun  [Clear All Filters]
2020-09-28
Zhang, Xun, Zhao, Jinxiong, Yang, Fan, Zhang, Qin, Li, Zhiru, Gong, Bo, Zhi, Yong, Zhang, Xuejun.  2019.  An Automated Composite Scanning Tool with Multiple Vulnerabilities. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). :1060–1064.
In order to effectively do network security protection, detecting system vulnerabilities becomes an indispensable process. Here, the vulnerability detection module with three functions is assembled into a device, and a composite detection tool with multiple functions is proposed to deal with some frequent vulnerabilities. The tool includes a total of three types of vulnerability detection, including cross-site scripting attacks, SQL injection, and directory traversal. First, let's first introduce the principle of each type of vulnerability; then, introduce the detection method of each type of vulnerability; finally, detail the defenses of each type of vulnerability. The benefits are: first, the cost of manual testing is eliminated; second, the work efficiency is greatly improved; and third, the network is safely operated in the first time.
2020-09-21
Zhang, Xuejun, Chen, Qian, Peng, Xiaohui, Jiang, Xinlong.  2019.  Differential Privacy-Based Indoor Localization Privacy Protection in Edge Computing. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :491–496.

With the popularity of smart devices and the widespread use of the Wi-Fi-based indoor localization, edge computing is becoming the mainstream paradigm of processing massive sensing data to acquire indoor localization service. However, these data which were conveyed to train the localization model unintentionally contain some sensitive information of users/devices, and were released without any protection may cause serious privacy leakage. To solve this issue, we propose a lightweight differential privacy-preserving mechanism for the edge computing environment. We extend ε-differential privacy theory to a mature machine learning localization technology to achieve privacy protection while training the localization model. Experimental results on multiple real-world datasets show that, compared with the original localization technology without privacy-preserving, our proposed scheme can achieve high accuracy of indoor localization while providing differential privacy guarantee. Through regulating the value of ε, the data quality loss of our method can be controlled up to 8.9% and the time consumption can be almost negligible. Therefore, our scheme can be efficiently applied in the edge networks and provides some guidance on indoor localization privacy protection in the edge computing.