Visible to the public Biblio

Filters: Author is Marino, Daniel  [Clear All Filters]
2021-10-12
Hassan, Wajih Ul, Bates, Adam, Marino, Daniel.  2020.  Tactical Provenance Analysis for Endpoint Detection and Response Systems. 2020 IEEE Symposium on Security and Privacy (SP). :1172–1189.
Endpoint Detection and Response (EDR) tools provide visibility into sophisticated intrusions by matching system events against known adversarial behaviors. However, current solutions suffer from three challenges: 1) EDR tools generate a high volume of false alarms, creating backlogs of investigation tasks for analysts; 2) determining the veracity of these threat alerts requires tedious manual labor due to the overwhelming amount of low-level system logs, creating a "needle-in-a-haystack" problem; and 3) due to the tremendous resource burden of log retention, in practice the system logs describing long-lived attack campaigns are often deleted before an investigation is ever initiated.This paper describes an effort to bring the benefits of data provenance to commercial EDR tools. We introduce the notion of Tactical Provenance Graphs (TPGs) that, rather than encoding low-level system event dependencies, reason about causal dependencies between EDR-generated threat alerts. TPGs provide compact visualization of multi-stage attacks to analysts, accelerating investigation. To address EDR's false alarm problem, we introduce a threat scoring methodology that assesses risk based on the temporal ordering between individual threat alerts present in the TPG. In contrast to the retention of unwieldy system logs, we maintain a minimally-sufficient skeleton graph that can provide linkability between existing and future threat alerts. We evaluate our system, RapSheet, using the Symantec EDR tool in an enterprise environment. Results show that our approach can rank truly malicious TPGs higher than false alarm TPGs. Moreover, our skeleton graph reduces the long-term burden of log retention by up to 87%.
2020-10-06
Amarasinghe, Kasun, Wickramasinghe, Chathurika, Marino, Daniel, Rieger, Craig, Manicl, Milos.  2018.  Framework for Data Driven Health Monitoring of Cyber-Physical Systems. 2018 Resilience Week (RWS). :25—30.

Modern infrastructure is heavily reliant on systems with interconnected computational and physical resources, named Cyber-Physical Systems (CPSs). Hence, building resilient CPSs is a prime need and continuous monitoring of the CPS operational health is essential for improving resilience. This paper presents a framework for calculating and monitoring of health in CPSs using data driven techniques. The main advantages of this data driven methodology is that the ability of leveraging heterogeneous data streams that are available from the CPSs and the ability of performing the monitoring with minimal a priori domain knowledge. The main objective of the framework is to warn the operators of any degradation in cyber, physical or overall health of the CPS. The framework consists of four components: 1) Data acquisition and feature extraction, 2) state identification and real time state estimation, 3) cyber-physical health calculation and 4) operator warning generation. Further, this paper presents an initial implementation of the first three phases of the framework on a CPS testbed involving a Microgrid simulation and a cyber-network which connects the grid with its controller. The feature extraction method and the use of unsupervised learning algorithms are discussed. Experimental results are presented for the first two phases and the results showed that the data reflected different operating states and visualization techniques can be used to extract the relationships in data features.