Visible to the public Biblio

Filters: Author is Cruickshank, Haitham  [Clear All Filters]
2021-08-17
Bhutta, Muhammad Nasir Mumtaz, Cruickshank, Haitham, Nadeem, Adnan.  2020.  A Framework for Key Management Architecture for DTN (KMAD): Requirements and Design. 2019 International Conference on Advances in the Emerging Computing Technologies (AECT). :1–4.
Key Management in Delay Tolerant Networks (DTN) still remains an unsolved complex problem. Due to peculiar characteristics of DTN, important challenges that make it difficult to design key management architecture are: 1) no systematic requirement analysis is undertaken to define its components, their composition and prescribed functions; and 2) no framework is available for its seamless integration with Bundle Security Protocol (BSP). This paper proposes a Key Management Architecture for DTN (KMAD) to address challenges in DTN key management. The proposed architecture not only provides guidelines for key management in DTN but also caters for seamless integration with BSP. The framework utilizes public key cryptography to provide required security services to enable exchange of keying material, and information about security policy and cipher suites. The framework also supports secure exchange of control and data information in DTNs.
2020-10-19
Bao, Shihan, Lei, Ao, Cruickshank, Haitham, Sun, Zhili, Asuquo, Philip, Hathal, Waleed.  2019.  A Pseudonym Certificate Management Scheme Based on Blockchain for Internet of Vehicles. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :28–35.
Research into the established area of ITS is evolving into the Internet of Vehicles (IoV), itself a fast-moving research area, fuelled in part by rapid changes in computing and communication technologies. Using pseudonym certificate is a popular way to address privacy issues in IoV. Therefore, the certificate management scheme is considered as a feasible technique to manage system and maintain the lifecycle of certificate. In this paper, we propose an efficient pseudonym certificate management scheme in IoV. The Blockchain concept is introduced to simplify the network structure and distributed maintenance of the Certificate Revocation List (CRL). The proposed scheme embeds part of the certificate revocation functions within the security and privacy applications, aiming to reduce the communication overhead and shorten the processing time cost. Extensive simulations and analysis show the effectiveness and efficiency of the proposed scheme, in which the Blockchain structure costs fewer network resources and gives a more economic solution to against further cybercrime attacks.