Visible to the public Biblio

Filters: Author is Kumar, Rahul  [Clear All Filters]
2021-05-05
Kumar, Rahul, Sethi, Kamalakanta, Prajapati, Nishant, Rout, Rashmi Ranjan, Bera, Padmalochan.  2020.  Machine Learning based Malware Detection in Cloud Environment using Clustering Approach. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.

Enforcing security and resilience in a cloud platform is an essential but challenging problem due to the presence of a large number of heterogeneous applications running on shared resources. A security analysis system that can detect threats or malware must exist inside the cloud infrastructure. Much research has been done on machine learning-driven malware analysis, but it is limited in computational complexity and detection accuracy. To overcome these drawbacks, we proposed a new malware detection system based on the concept of clustering and trend micro locality sensitive hashing (TLSH). We used Cuckoo sandbox, which provides dynamic analysis reports of files by executing them in an isolated environment. We used a novel feature extraction algorithm to extract essential features from the malware reports obtained from the Cuckoo sandbox. Further, the most important features are selected using principal component analysis (PCA), random forest, and Chi-square feature selection methods. Subsequently, the experimental results are obtained for clustering and non-clustering approaches on three classifiers, including Decision Tree, Random Forest, and Logistic Regression. The model performance shows better classification accuracy and false positive rate (FPR) as compared to the state-of-the-art works and non-clustering approach at significantly lesser computation cost.

2020-10-26
Sethi, Kamalakanta, Kumar, Rahul, Sethi, Lingaraj, Bera, Padmalochan, Patra, Prashanta Kumar.  2019.  A Novel Machine Learning Based Malware Detection and Classification Framework. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–4.
As time progresses, new and complex malware types are being generated which causes a serious threat to computer systems. Due to this drastic increase in the number of malware samples, the signature-based malware detection techniques cannot provide accurate results. Different studies have demonstrated the proficiency of machine learning for the detection and classification of malware files. Further, the accuracy of these machine learning models can be improved by using feature selection algorithms to select the most essential features and reducing the size of the dataset which leads to lesser computations. In this paper, we have developed a machine learning based malware analysis framework for efficient and accurate malware detection and classification. We used Cuckoo sandbox for dynamic analysis which executes malware in an isolated environment and generates an analysis report based on the system activities during execution. Further, we propose a feature extraction and selection module which extracts features from the report and selects the most important features for ensuring high accuracy at minimum computation cost. Then, we employ different machine learning algorithms for accurate detection and fine-grained classification. Experimental results show that we got high detection and classification accuracy in comparison to the state-of-the-art approaches.