Visible to the public Biblio

Filters: Author is Kahla, Mostafa  [Clear All Filters]
2023-03-31
Kahla, Mostafa, Chen, Si, Just, Hoang Anh, Jia, Ruoxi.  2022.  Label-Only Model Inversion Attacks via Boundary Repulsion. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :15025–15033.
Recent studies show that the state-of-the-art deep neural networks are vulnerable to model inversion attacks, in which access to a model is abused to reconstruct private training data of any given target class. Existing attacks rely on having access to either the complete target model (whitebox) or the model's soft-labels (blackbox). However, no prior work has been done in the harder but more practical scenario, in which the attacker only has access to the model's predicted label, without a confidence measure. In this paper, we introduce an algorithm, Boundary-Repelling Model Inversion (BREP-MI), to invert private training data using only the target model's predicted labels. The key idea of our algorithm is to evaluate the model's predicted labels over a sphere and then estimate the direction to reach the target class's centroid. Using the example of face recognition, we show that the images reconstructed by BREP-MI successfully reproduce the semantics of the private training data for various datasets and target model architectures. We compare BREP-MI with the state-of-the-art white-box and blackbox model inversion attacks, and the results show that despite assuming less knowledge about the target model, BREP-MI outperforms the blackbox attack and achieves comparable results to the whitebox attack. Our code is available online.11https://github.com/m-kahla/Label-Only-Model-Inversion-Attacks-via-Boundary-Repulsion
2020-10-29
Kahla, Mostafa, Azab, Mohamed, Mansour, Ahmed.  2018.  Secure, Resilient, and Self-Configuring Fog Architecture for Untrustworthy IoT Environments. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :49—54.

The extensive increase in the number of IoT devices and the massive data generated and sent to the cloud hinder the cloud abilities to handle it. Further, some IoT devices are latency-sensitive. Such sensitivity makes it harder for far clouds to handle the IoT needs in a timely manner. A new technology named "Fog computing" has emerged as a solution to such problems. Fog computing relies on close by computational devices to handle the conventional cloud load. However, Fog computing introduced additional problems related to the trustworthiness and safety of such devices. Unfortunately, the suggested architectures did not consider such problem. In this paper we present a novel self-configuring fog architecture to support IoT networks with security and trust in mind. We realize the concept of Moving-target defense by mobilizing the applications inside the fog using live migrations. Performance evaluations using a benchmark for mobilized applications showed that the added overhead of live migrations is very small making it deployable in real scenarios. Finally, we presented a mathematical model to estimate the survival probabilities of both static and mobile applications within the fog. Moreover, this work can be extended to other systems such as mobile ad-hoc networks (MANETS) or in vehicular cloud computing (VCC).