Visible to the public Biblio

Filters: Author is Basu, Kanad  [Clear All Filters]
2021-09-30
Meraj Ahmed, M, Dhavlle, Abhijitt, Mansoor, Naseef, Sutradhar, Purab, Pudukotai Dinakarrao, Sai Manoj, Basu, Kanad, Ganguly, Amlan.  2020.  Defense Against on-Chip Trojans Enabling Traffic Analysis Attacks. 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
Interconnection networks for multi/many-core processors or server systems are the backbone of the system as they enable data communication among the processing cores, caches, memory and other peripherals. Given the criticality of the interconnects, the system can be severely subverted if the interconnection is compromised. The threat of Hardware Trojans (HTs) penetrating complex hardware systems such as multi/many-core processors are increasing due to the increasing presence of third party players in a System-on-chip (SoC) design. Even by deploying naïve HTs, an adversary can exploit the Network-on-Chip (NoC) backbone of the processor and get access to communication patterns in the system. This information, if leaked to an attacker, can reveal important insights regarding the application suites running on the system; thereby compromising the user privacy and paving the way for more severe attacks on the entire system. In this paper, we demonstrate that one or more HTs embedded in the NoC of a multi/many-core processor is capable of leaking sensitive information regarding traffic patterns to an external malicious attacker; who, in turn, can analyze the HT payload data with machine learning techniques to infer the applications running on the processor. Furthermore, to protect against such attacks, we propose a Simulated Annealing-based randomized routing algorithm in the system. The proposed defense is capable of obfuscating the attacker's data processing capabilities to infer the user profiles successfully. Our experimental results demonstrate that the proposed randomized routing algorithm could reduce the accuracy of identifying user profiles by the attacker from \textbackslashtextgreater98% to \textbackslashtextless; 15% in multi/many-core systems.
2020-10-30
Basu, Kanad, Elnaggar, Rana, Chakrabarty, Krishnendu, Karri, Ramesh.  2019.  PREEMPT: PReempting Malware by Examining Embedded Processor Traces. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1—6.

Anti-virus software (AVS) tools are used to detect Malware in a system. However, software-based AVS are vulnerable to attacks. A malicious entity can exploit these vulnerabilities to subvert the AVS. Recently, hardware components such as Hardware Performance Counters (HPC) have been used for Malware detection. In this paper, we propose PREEMPT, a zero overhead, high-accuracy and low-latency technique to detect Malware by re-purposing the embedded trace buffer (ETB), a debug hardware component available in most modern processors. The ETB is used for post-silicon validation and debug and allows us to control and monitor the internal activities of a chip, beyond what is provided by the Input/Output pins. PREEMPT combines these hardware-level observations with machine learning-based classifiers to preempt Malware before it can cause damage. There are many benefits of re-using the ETB for Malware detection. It is difficult to hack into hardware compared to software, and hence, PREEMPT is more robust against attacks than AVS. PREEMPT does not incur performance penalties. Finally, PREEMPT has a high True Positive value of 94% and maintains a low False Positive value of 2%.