Visible to the public Biblio

Filters: Author is Shreelekshmi, R.  [Clear All Filters]
2023-06-30
Anju, J., Shreelekshmi, R..  2022.  An Enhanced Copy-deterrence scheme for Secure Image Outsourcing in Cloud. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :97–102.
In this paper, we propose a novel watermarking-based copy deterrence scheme for identifying data leaks through authorized query users in secure image outsourcing systems. The scheme generates watermarks unique to each query user, which are embedded in the retrieved encrypted images. During unauthorized distribution, the watermark embedded in the image is extracted to determine the untrustworthy query user. Experimental results show that the proposed scheme achieves minimal information loss, faster embedding and better resistance to JPEG compression attacks compared with the state-of-the-art schemes.
2020-11-16
Anju, J., Shreelekshmi, R..  2019.  Modified Feature Descriptors to enhance Secure Content-based Image Retrieval in Cloud. 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). 1:674–680.
With the emergence of cloud, content-based image retrieval (CBIR) on encrypted domain gain enormous importance due to the ever increasing need for ensuring confidentiality, authentication, integrity and privacy of data. CBIR on outsourced encrypted images can be done by extracting features from unencrypted images and generating searchable encrypted index based on it. Visual descriptors like color descriptors, shape and texture descriptors, etc. are employed for similarity search. Since visual descriptors used to represent an image have crucial role in retrieving most similar results, an attempt to combine them has been made in this paper. The effect of combining different visual descriptors on retrieval precision in secure CBIR scheme proposed by Xia et al. is analyzed. Experimental results show that combining visual descriptors can significantly enhance retrieval precision of the secure CBIR scheme.