Visible to the public Biblio

Filters: Author is Malik, A.  [Clear All Filters]
2021-01-11
Malik, A., Fréin, R. de, Al-Zeyadi, M., Andreu-Perez, J..  2020.  Intelligent SDN Traffic Classification Using Deep Learning: Deep-SDN. 2020 2nd International Conference on Computer Communication and the Internet (ICCCI). :184–189.
Accurate traffic classification is fundamentally important for various network activities such as fine-grained network management and resource utilisation. Port-based approaches, deep packet inspection and machine learning are widely used techniques to classify and analyze network traffic flows. However, over the past several years, the growth of Internet traffic has been explosive due to the greatly increased number of Internet users. Therefore, both port-based and deep packet inspection approaches have become inefficient due to the exponential growth of the Internet applications that incurs high computational cost. The emerging paradigm of software-defined networking has reshaped the network architecture by detaching the control plane from the data plane to result in a centralised network controller that maintains a global view over the whole network on its domain. In this paper, we propose a new deep learning model for software-defined networks that can accurately identify a wide range of traffic applications in a short time, called Deep-SDN. The performance of the proposed model was compared against the state-of-the-art and better results were reported in terms of accuracy, precision, recall, and f-measure. It has been found that 96% as an overall accuracy can be achieved with the proposed model. Based on the obtained results, some further directions are suggested towards achieving further advances in this research area.
2020-12-02
Kaur, M., Malik, A..  2018.  An Efficient and Reliable Routing Protocol Using Bio-Inspired Techniques for Congestion Control in WSN. 2018 4th International Conference on Computing Sciences (ICCS). :15—22.

In wireless sensor networks (WSNs), congestion control is a very essential region of concern. When the packets that are coming get increased than the actual capacity of network or nodes results into congestion in the network. Congestion in network can cause reduction in throughput, increase in network delay, and increase in packet loss and sensor energy waste. For that reason, new complex methods are mandatory to tackle with congestion. So it is necessary to become aware of congestion and manage the congested resources in wireless sensor networks for enhancing the network performance. Diverse methodologies for congestion recognition and prevention have been presented in the previous couple of years. To handle some of the problems, this paper exhibits a new technique for controlling the congestion. An efficient and reliable routing protocol (ERRP) based on bio inspired algorithms is introduced in this paper for solving congestion problem. In the proposed work, a way is calculated to send the packets on the new pathway. The proposed work has used three approaches for finding the path which results into a congestion free path. Our analysis and simulation results shows that our approach provides better performance as compared to previous approaches in terms of throughput, packet loss, delay etc.