Visible to the public Biblio

Filters: Author is Guo, S.  [Clear All Filters]
2021-04-27
Wang, Y., Guo, S., Wu, J., Wang, H. H..  2020.  Construction of Audit Internal Control System Based on Online Big Data Mining and Decentralized Model. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :623–626.
Construction of the audit internal control system based on the online big data mining and decentralized model is done in this paper. How to integrate the novel technologies to internal control is the attracting task. IT audit is built on the information system and is independent of the information system itself. Application of the IT audit in enterprises can provide a guarantee for the security of the information system that can give an objective evaluation of the investment. This paper integrates the online big data mining and decentralized model to construct an efficient system. Association discovery is also called a data link. It uses similarity functions, such as the Euclidean distance, edit distance, cosine distance, Jeckard function, etc., to establish association relationships between data entities. These parameters are considered for comprehensive analysis.
2020-12-21
Huang, H., Zhou, S., Lin, J., Zhang, K., Guo, S..  2020.  Bridge the Trustworthiness Gap amongst Multiple Domains: A Practical Blockchain-based Approach. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
In isolated network domains, global trustworthiness (e.g., consistent network view) is critical to the multiple-domain business partners who aim to perform the trusted corporations depending on each isolated network view. However, to achieve such global trustworthiness across distributed network domains is a challenge. This is because when multiple-domain partners are required to exchange their local domain views with each other, it is difficult to ensure the data trustworthiness among them. In addition, the isolated domain view in each partner is prone to be destroyed by malicious falsification attacks. To this end, we propose a blockchain-based approach that can ensure the trustworthiness among multiple-party domains. In this paper, we mainly present the design and implementation of the proposed trustworthiness-protection system. A cloud-based prototype and a local testbed are developed based on Ethereum. Finally, experimental results demonstrate the effectiveness of the proposed prototype and testbed.