Visible to the public Biblio

Filters: Author is Mazzeo, A.  [Clear All Filters]
2021-01-18
Barbareschi, M., Barone, S., Mazzeo, A., Mazzocca, N..  2019.  Efficient Reed-Muller Implementation for Fuzzy Extractor Schemes. 2019 14th International Conference on Design Technology of Integrated Systems In Nanoscale Era (DTIS). :1–2.
Nowadays, physical tampering and counterfeiting of electronic devices are still an important security problem and have a great impact on large-scale and distributed applications, such as Internet-of-Things. Physical Unclonable Functions (PUFs) have the potential to be a fundamental means to guarantee intrinsic hardware security, since they promise immunity against most of known attack models. However, inner nature of PUF circuits hinders a wider adoption since responses turn out to be noisy and not stable during time. To overcome this issue, most of PUF implementations require a fuzzy extraction scheme, able to recover responses stability by exploiting error correction codes (ECCs). In this paper, we propose a Reed-Muller (RM) ECC design, meant to be embedded into a fuzzy extractor, that can be efficiently configured in terms of area/delay constraints in order to get reliable responses from PUFs. We provide implementation details and experimental evidences of area/delay efficiency through syntheses on medium-range FPGA device.