Visible to the public Biblio

Filters: Author is Song, Z.  [Clear All Filters]
2021-03-22
Song, Z., Matsumura, R., Takahashi, Y., Nanjo, Y., Kusaka, T., Nogami, Y., Matsumoto, T..  2020.  An Implementation and Evaluation of a Pairing on Elliptic Curves with Embedding Degree 14. 2020 35th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :293–298.
As the computer architecture technology evolves, communication protocols have been demanded not only having reliable security but also flexible functionality. Advanced cryptography has been expected as a new generation cryptography which suffices such the requirements. A pairing is one of the key technologies of the cryptography and the pairing has been known as having a substantial amount of construction parameters. Recently, the elliptic curve with embedding degree 14 is evaluated as one of the efficient curves for pairing. In the paper, we implement an optimal ate pairing on the elliptic curve by applying several variants of multiplication algorithms of extension field of degree 7 on multiple devices. The best multiplication algorithm among the candidates is derived. Besides, for efficient calculations, we propose a pseudo 7-sparse algorithm and a fast calculation method of final exponentiation. As a result, we discover the proper multiplication algorithm bases on the rate of addition and multiplications on several different computer platforms. Our proposed pseudo 7-sparse algorithm is approximately 1.54% faster than a regular algorithm on almost all tested platforms. Eventually, for the total execution time of pairing we record 9.33ms on Corei5-9500.
2021-02-22
Song, Z., Kar, P..  2020.  Name-Signature Lookup System: A Security Enhancement to Named Data Networking. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1444–1448.
Named Data Networking (NDN) is a content-centric networking, where the publisher of the packet signs and encapsulates the data packet with a name-content-signature encryption to verify the authenticity and integrity of itself. This scheme can solve many of the security issues inherently compared to IP networking. NDN also support mobility since it hides the point-to-point connection details. However, an extreme attack takes place when an NDN consumer newly connects to a network. A Man-in-the-middle (MITM) malicious node can block the consumer and keep intercepting the interest packets sent out so as to fake the corresponding data packets signed with its own private key. Without knowledge and trust to the network, the NDN consumer can by no means perceive the attack and thus exposed to severe security and privacy hazard. In this paper, the Name-Signature Lookup System (NSLS) and corresponding Name-Signature Lookup Protocol (NSLP) is introduced to verify packets with their registered genuine publisher even in an untrusted network with the help of embedded keys inside Network Interface Controller (NIC), by which attacks like MITM is eliminated. A theoretical analysis of comparing NSLS with existing security model is provided. Digest algorithm SHA-256 and signature algorithm RSA are used in the NSLP model without specific preference.