Biblio
Many consumers now rely on different forms of voice assistants, both stand-alone devices and those built into smartphones. Currently, these systems react to specific wake-words, such as "Alexa," "Siri," or "Ok Google." However, with advancements in natural language processing, the next generation of voice assistants could instead always listen to the acoustic environment and proactively provide services and recommendations based on conversations without being explicitly invoked. We refer to such devices as "always listening voice assistants" and explore expectations around their potential use. In this paper, we report on a 178-participant survey investigating the potential services people anticipate from such a device and how they feel about sharing their data for these purposes. Our findings reveal that participants can anticipate a wide range of services pertaining to a conversation; however, most of the services are very similar to those that existing voice assistants currently provide with explicit commands. Participants are more likely to consent to share a conversation when they do not find it sensitive, they are comfortable with the service and find it beneficial, and when they already own a stand-alone voice assistant. Based on our findings we discuss the privacy challenges in designing an always-listening voice assistant.
Intelligent voice assistants (IVAs) and other voice-enabled devices already form an integral component of the Internet of Things and will continue to grow in popularity. As their capabilities evolve, they will move beyond relying on the wake-words today’s IVAs use, engaging instead in continuous listening. Though potentially useful, the continuous recording and analysis of speech can pose a serious threat to individuals’ privacy. Ideally, users would be able to limit or control the types of information such devices have access to. But existing technical approaches are insufficient for enforcing any such restrictions. To begin formulating a solution, we develop a system- atic methodology for studying continuous-listening applications and survey architectural approaches to designing a system that enhances privacy while preserving the benefits of always-listening assistants.
Older adults (65+) are becoming primary users of emerging smart systems, especially in health care. However, these technologies are often not designed for older users and can pose serious privacy and security concerns due to their novelty, complexity, and propensity to collect and communicate vast amounts of sensitive information. Efforts to address such concerns must build on an in-depth understanding of older adults' perceptions and preferences about data privacy and security for these technologies, and accounting for variance in physical and cognitive abilities. In semi-structured interviews with 46 older adults, we identified a range of complex privacy and security attitudes and needs specific to this population, along with common threat models, misconceptions, and mitigation strategies. Our work adds depth to current models of how older adults' limited technical knowledge, experience, and age-related declines in ability amplify vulnerability to certain risks; we found that health, living situation, and finances play a notable role as well. We also found that older adults often experience usability issues or technical uncertainties in mitigating those risks -- and that managing privacy and security concerns frequently consists of limiting or avoiding technology use. We recommend educational approaches and usable technical protections that build on seniors' preferences.