Visible to the public Biblio

Filters: Author is Cheng, Jun  [Clear All Filters]
2022-10-12
Ogawa, Yuji, Kimura, Tomotaka, Cheng, Jun.  2021.  Vulnerability Assessment for Deep Learning Based Phishing Detection System. 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). :1—2.
Recently, the threats of phishing attacks have in-creased. As a countermeasure against phishing attacks, phishing detection systems using deep learning techniques have been considered. However, deep learning techniques are vulnerable to adversarial examples (AEs) that intentionally cause misclassification. When AEs are applied to a deep-learning-based phishing detection system, they pose a significant security risk. Therefore, in this paper, we assess the vulnerability of a phishing detection system by inputting AEs generated based on a dataset that consists of phishing sites’ URLs. Moreover, we consider countermeasures against AEs and clarify whether these defense methods can prevent misclassification.
2021-05-18
Ogawa, Yuji, Kimura, Tomotaka, Cheng, Jun.  2020.  Vulnerability Assessment for Machine Learning Based Network Anomaly Detection System. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). :1–2.
In this paper, we assess the vulnerability of network anomaly detection systems that use machine learning methods. Although the performance of these network anomaly detection systems is high in comparison to that of existing methods without machine learning methods, the use of machine learning methods for detecting vulnerabilities is a growing concern among researchers of image processing. If the vulnerabilities of machine learning used in the network anomaly detection method are exploited by attackers, large security threats are likely to emerge in the near future. Therefore, in this paper we clarify how vulnerability detection of machine learning network anomaly detection methods affects their performance.