Visible to the public Biblio

Filters: Author is Deane, Chelsea  [Clear All Filters]
2021-05-20
Almogbil, Atheer, Alghofaili, Abdullah, Deane, Chelsea, Leschke, Timothy, Almogbil, Atheer, Alghofaili, Abdullah.  2020.  The Accuracy of GPS-Enabled Fitbit Activities as Evidence: A Digital Forensics Study. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :186—189.

Technology is advancing rapidly and with this advancement, it has become apparent that it is nearly impossible to not leave a digital trace when committing a crime. As evidenced by multiple cases handled by law enforcement, Fitbit data has proved to be useful when determining the validity of alibis and in piecing together the timeline of a crime scene. In our paper, experiments testing the accuracy and reliability of GPS-tracked activities logged by the Fitbit Alta tracker and Ionic smartwatch are conducted. Potential indicators of manipulated or altered GPS-tracked activities are identified to help guide digital forensic investigators when handling such Fitbit data as evidence.

Almogbil, Atheer, Alghofaili, Abdullah, Deane, Chelsea, Leschke, Timothy, Almogbil, Atheer, Alghofaili, Abdullah.  2020.  Digital Forensic Analysis of Fitbit Wearable Technology: An Investigator’s Guide. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :44—49.
Wearable technology, such as Fitbit devices, log a user's daily activities, heart rate, calories burned, step count, and sleep activity. This information is valuable to digital forensic investigators as it may serve as evidence to a crime, to either support a suspect's innocence or guilt. It is important for an investigator to find and analyze every piece of data for accuracy and integrity; however, there is no standard for conducting a forensic investigation for wearable technology. In this paper, we conduct a forensic analysis of two different Fitbit devices using open-source tools. It is the responsibility of the investigator to show how the data was obtained and to ensure that the data was not modified during the analysis. This paper will guide investigators in understanding what data is collected by a Fitbit device (specifically the Ionic smartwatch and Alta tracker), how to handle Fitbit devices, and how to extract and forensically analyze said devices using open-source tools, Autopsy Sleuth Kit and Bulk Extractor Viewer.