Visible to the public Biblio

Filters: Author is Albayrak, Zafer  [Clear All Filters]
2022-03-14
Altunay, Hakan Can, Albayrak, Zafer, Özalp, Ahmet Nusret, Çakmak, Muhammet.  2021.  Analysis of Anomaly Detection Approaches Performed Through Deep Learning Methods in SCADA Systems. 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1—6.
Supervisory control and data acquisition (SCADA) systems are used with monitoring and control purposes for the process not to fail in industrial control systems. Today, the increase in the use of standard protocols, hardware, and software in the SCADA systems that can connect to the internet and institutional networks causes these systems to become a target for more cyber-attacks. Intrusion detection systems are used to reduce or minimize cyber-attack threats. The use of deep learning-based intrusion detection systems also increases in parallel with the increase in the amount of data in the SCADA systems. The unsupervised feature learning present in the deep learning approaches enables the learning of important features within the large datasets. The features learned in an unsupervised way by using deep learning techniques are used in order to classify the data as normal or abnormal. Architectures such as convolutional neural network (CNN), Autoencoder (AE), deep belief network (DBN), and long short-term memory network (LSTM) are used to learn the features of SCADA data. These architectures use softmax function, extreme learning machine (ELM), deep belief networks, and multilayer perceptron (MLP) in the classification process. In this study, anomaly-based intrusion detection systems consisting of convolutional neural network, autoencoder, deep belief network, long short-term memory network, or various combinations of these methods on the SCADA networks in the literature were analyzed and the positive and negative aspects of these approaches were explained through their attack detection performances.
2021-05-25
Alabadi, Montdher, Albayrak, Zafer.  2020.  Q-Learning for Securing Cyber-Physical Systems : A survey. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–13.
A cyber-physical system (CPS) is a term that implements mainly three parts, Physical elements, communication networks, and control systems. Currently, CPS includes the Internet of Things (IoT), Internet of Vehicles (IoV), and many other systems. These systems face many security challenges and different types of attacks, such as Jamming, DDoS.CPS attacks tend to be much smarter and more dynamic; thus, it needs defending strategies that can handle this level of intelligence and dynamicity. Last few years, many researchers use machine learning as a base solution to many CPS security issues. This paper provides a survey of the recent works that utilized the Q-Learning algorithm in terms of security enabling and privacy-preserving. Different adoption of Q-Learning for security and defending strategies are studied. The state-of-the-art of Q-learning and CPS systems are classified and analyzed according to their attacks, domain, supported techniques, and details of the Q-Learning algorithm. Finally, this work highlight The future research trends toward efficient utilization of Q-learning and deep Q-learning on CPS security.