Visible to the public Biblio

Filters: Author is Cuppens, Frédéric  [Clear All Filters]
2022-04-20
Barbeau, Michel, Cuppens, Frédéric, Cuppens, Nora, Dagnas, Romain, Garcia-Alfaro, Joaquin.  2021.  Resilience Estimation of Cyber-Physical Systems via Quantitative Metrics. IEEE Access. 9:46462–46475.
This paper is about the estimation of the cyber-resilience of CPS. We define two new resilience estimation metrics: k-steerability and l-monitorability. They aim at assisting designers to evaluate and increase the cyber-resilience of CPS when facing stealthy attacks. The k-steerability metric reflects the ability of a controller to act on individual plant state variables when, at least, k different groups of functionally diverse input signals may be processed. The l-monitorability metric indicates the ability of a controller to monitor individual plant state variables with l different groups of functionally diverse outputs. Paired together, the metrics lead to CPS reaching (k,l)-resilience. When k and l are both greater than one, a CPS can absorb and adapt to control-theoretic attacks manipulating input and output signals. We also relate the parameters k and l to the recoverability of a system. We define recoverability strategies to mitigate the impact of perpetrated attacks. We show that the values of k and l can be augmented by combining redundancy and diversity in hardware and software, in order to apply the moving target paradigm. We validate the approach via simulation and numeric results.
Conference Name: IEEE Access
2021-08-02
Navas, Renzo E., Sandaker, Håkon, Cuppens, Frédéric, Cuppens, Nora, Toutain, Laurent, Papadopoulos, Georgios Z..  2020.  IANVS: A Moving Target Defense Framework for a Resilient Internet of Things. 2020 IEEE Symposium on Computers and Communications (ISCC). :1—6.
The Internet of Things (IoT) is more and more present in fundamental aspects of our societies and personal life. Billions of objects now have access to the Internet. This networking capability allows for new beneficial services and applications. However, it is also the entry-point for a wide variety of cyber-attacks that target these devices. The security measures present in real IoT systems lag behind those of the standard Internet. Security is sometimes completely absent. Moving Target Defense (MTD) is a 10-year-old cyber-defense paradigm. It proposes to randomize components of a system. Reasonably, an attacker will have a higher cost attacking an MTD-version of a system compared with a static-version of it. Even if MTD has been successfully applied to standard systems, its deployment for IoT is still lacking. In this paper, we propose a generic MTD framework suitable for IoT systems: IANVS (pronounced Janus). Our framework has a modular design. Its components can be adapted according to the specific constraints and requirements of a particular IoT system. We use it to instantiate two concrete MTD strategies. One that targets the UDP port numbers (port-hopping), and another a CoAP resource URI. We implement our proposal on real hardware using Pycom LoPy4 nodes. We expose the nodes to a remote Denial-of-Service attack and evaluate the effectiveness of the IANVS-based port-hopping MTD proposal.
2021-05-25
Barbeau, Michel, Cuppens, Frédéric, Cuppens, Nora, Dagnas, Romain, Garcia-Alfaro, Joaquin.  2020.  Metrics to Enhance the Resilience of Cyber-Physical Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1167—1172.
We focus on resilience towards covert attacks on Cyber-Physical Systems (CPS). We define the new k-steerability and l-monitorability control-theoretic concepts. k-steerability reflects the ability to act on every individual plant state variable with at least k different groups of functionally diverse input signals. l-monitorability indicates the ability to monitor every individual plant state variable with £ different groups of functionally diverse output signals. A CPS with k-steerability and l-monitorability is said to be (k, l)-resilient. k and l, when both greater than one, provide the capability to mitigate the impact of covert attacks when some signals, but not all, are compromised. We analyze the influence of k and l on the resilience of a system and the ability to recover its state when attacks are perpetrated. We argue that the values of k and l can be augmented by combining redundancy and diversity in hardware and software techniques that apply the moving target paradigm.