Biblio
Since a lot of information is outsourcing into cloud servers, data confidentiality becomes a higher risk to service providers. To assure data security, Ciphertext Policy Attributes-Based Encryption (CP-ABE) is observed for the cloud environment. Because ciphertexts and secret keys are relying on attributes, the revocation issue becomes a challenge for CP-ABE. This paper proposes an encryption access control (EAC) scheme to fulfill policy revocation which covers both attribute and user revocation. When one of the attributes in an access policy is changed by the data owner, the authorized users should be updated immediately because the revoked users who have gained previous access policy can observe the ciphertext. Especially for data owners, four types of updating policy levels are predefined. By classifying those levels, each secret token key is distinctly generated for each level. Consequently, a new secret key is produced by hashing the secret token key. This paper analyzes the execution times of key generation, encryption, and decryption times between non-revocation and policy revocation cases. Performance analysis for policy revocation is also presented in this paper.