Visible to the public Biblio

Filters: Author is Wu, Jia  [Clear All Filters]
2023-05-12
Wei, Yuecen, Fu, Xingcheng, Sun, Qingyun, Peng, Hao, Wu, Jia, Wang, Jinyan, Li, Xianxian.  2022.  Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation. 2022 IEEE International Conference on Data Mining (ICDM). :528–537.
Social networks are considered to be heterogeneous graph neural networks (HGNNs) with deep learning technological advances. HGNNs, compared to homogeneous data, absorb various aspects of information about individuals in the training stage. That means more information has been covered in the learning result, especially sensitive information. However, the privacy-preserving methods on homogeneous graphs only preserve the same type of node attributes or relationships, which cannot effectively work on heterogeneous graphs due to the complexity. To address this issue, we propose a novel heterogeneous graph neural network privacy-preserving method based on a differential privacy mechanism named HeteDP, which provides a double guarantee on graph features and topology. In particular, we first define a new attack scheme to reveal privacy leakage in the heterogeneous graphs. Specifically, we design a two-stage pipeline framework, which includes the privacy-preserving feature encoder and the heterogeneous link reconstructor with gradients perturbation based on differential privacy to tolerate data diversity and against the attack. To better control the noise and promote model performance, we utilize a bi-level optimization pattern to allocate a suitable privacy budget for the above two modules. Our experiments on four public benchmarks show that the HeteDP method is equipped to resist heterogeneous graph privacy leakage with admirable model generalization.
ISSN: 2374-8486
2021-06-01
Wang, Qi, Zhao, Weiliang, Yang, Jian, Wu, Jia, Zhou, Chuan, Xing, Qianli.  2020.  AtNE-Trust: Attributed Trust Network Embedding for Trust Prediction in Online Social Networks. 2020 IEEE International Conference on Data Mining (ICDM). :601–610.
Trust relationship prediction among people provides valuable supports for decision making, information dissemination, and product promotion in online social networks. Network embedding has achieved promising performance for link prediction by learning node representations that encode intrinsic network structures. However, most of the existing network embedding solutions cannot effectively capture the properties of a trust network that has directed edges and nodes with in/out links. Furthermore, there usually exist rich user attributes in trust networks, such as ratings, reviews, and the rated/reviewed items, which may exert significant impacts on the formation of trust relationships. It is still lacking a network embedding-based method that can adequately integrate these properties for trust prediction. In this work, we develop an AtNE-Trust model to address these issues. We firstly capture user embedding from both the trust network structures and user attributes. Then we design a deep multi-view representation learning module to further mine and fuse the obtained user embedding. Finally, a trust evaluation module is developed to predict the trust relationships between users. Representation learning and trust evaluation are optimized together to capture high-quality user embedding and make accurate predictions simultaneously. A set of experiments against the real-world datasets demonstrates the effectiveness of the proposed approach.