Visible to the public Biblio

Filters: Author is Reijsbergen, Daniël  [Clear All Filters]
2023-01-20
Reijsbergen, Daniël, Maw, Aung, Venugopalan, Sarad, Yang, Dianshi, Tuan Anh Dinh, Tien, Zhou, Jianying.  2022.  Protecting the Integrity of IoT Sensor Data and Firmware With A Feather-Light Blockchain Infrastructure. 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–9.
Smart cities deploy large numbers of sensors and collect a tremendous amount of data from them. For example, Advanced Metering Infrastructures (AMIs), which consist of physical meters that collect usage data about public utilities such as power and water, are an important building block in a smart city. In a typical sensor network, the measurement devices are connected through a computer network, which exposes them to cyber attacks. Furthermore, the data is centrally managed at the operator’s servers, making it vulnerable to insider threats.Our goal is to protect the integrity of data collected by large-scale sensor networks and the firmware in measurement devices from cyber attacks and insider threats. To this end, we first develop a comprehensive threat model for attacks against data and firmware integrity, which can target any of the stakeholders in the operation of the sensor network. Next, we use our threat model to analyze existing defense mechanisms, including signature checks, remote firmware attestation, anomaly detection, and blockchain-based secure logs. However, the large size of the Trusted Computing Base and a lack of scalability limit the applicability of these existing mechanisms. We propose the Feather-Light Blockchain Infrastructure (FLBI) framework to address these limitations. Our framework leverages a two-layer architecture and cryptographic threshold signature chains to support large networks of low-capacity devices such as meters and data aggregators. We have fully implemented the FLBI’s end-to-end functionality on the Hyperledger Fabric and private Ethereum blockchain platforms. Our experiments show that the FLBI is able to support millions of end devices.
2021-06-01
Reijsbergen, Daniël, Anh Dinh, Tien Tuan.  2020.  On Exploiting Transaction Concurrency To Speed Up Blockchains. 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). :1044—1054.
Consensus protocols are currently the bottlenecks that prevent blockchain systems from scaling. However, we argue that transaction execution is also important to the performance and security of blockchains. In other words, there are ample opportunities to speed up and further secure blockchains by reducing the cost of transaction execution. Our goal is to understand how much we can speed up blockchains by exploiting transaction concurrency available in blockchain workloads. To this end, we first analyze historical data of seven major public blockchains, namely Bitcoin, Bitcoin Cash, Litecoin, Dogecoin, Ethereum, Ethereum Classic, and Zilliqa. We consider two metrics for concurrency, namely the single-transaction conflict rate per block, and the group conflict rate per block. We find that there is more concurrency in UTXO-based blockchains than in account-based ones, although the amount of concurrency in the former is lower than expected. Another interesting finding is that some blockchains with larger blocks have more concurrency than blockchains with smaller blocks. Next, we propose an analytical model for estimating the transaction execution speed-up given an amount of concurrency. Using results from our empirical analysis, the model estimates that 6× speed-ups in Ethereum can be achieved if all available concurrency is exploited.