Visible to the public Biblio

Filters: Author is Li, Zhongkui  [Clear All Filters]
2021-06-02
Xiong, Yi, Li, Zhongkui.  2020.  Privacy Preserving Average Consensus by Adding Edge-based Perturbation Signals. 2020 IEEE Conference on Control Technology and Applications (CCTA). :712—717.
In this paper, the privacy preserving average consensus problem of multi-agent systems with strongly connected and weight balanced graph is considered. In most existing consensus algorithms, the agents need to exchange their state information, which leads to the disclosure of their initial states. This might be undesirable because agents' initial states may contain some important and sensitive information. To solve the problem, we propose a novel distributed algorithm, which can guarantee average consensus and meanwhile preserve the agents' privacy. This algorithm assigns some additive perturbation signals on the communication edges and these perturbations signals will be added to original true states for information exchanging. This ensures that direct disclosure of initial states can be avoided. Then a rigid analysis of our algorithm's privacy preserving performance is provided. For any individual agent in the network, we present a necessary and sufficient condition under which its privacy is preserved. The effectiveness of our algorithm is demonstrated by a numerical simulation.