Biblio
Consider a thin, flexible wire of fixed length that is held at each end by a robotic gripper. Any curve traced by this wire when in static equilibrium is a local solution to a geometric optimal control problem, with boundary conditions that vary with the position and orientation of each gripper. We prove that the set of all local solutions to this problem over all possible boundary conditions is a smooth manifold of finite dimension that can be parameterized by a single chart. We show that this chart makes it easy to implement a sampling-based algorithm for quasi-static manipulation planning. We characterize the performance of such an algorithm with experiments in simulation.
In this paper, we study quasi-static manipulation of a planar kinematic chain with a fixed base in which each joint is a linearly-elastic torsional spring. The shape of this chain when in static equilibrium can be represented as the solution to a discrete-time optimal control problem, with boundary conditions that vary with the position and orientation of the last link. We prove that the set of all solutions to this problem is a smooth manifold that can be parameterized by a single chart. For manipulation planning, we show several advantages of working in this chart instead of in the space of boundary conditions, particularly in the context of a sampling-based planning algorithm. Examples are provided in simulation.
Consider a thin, flexible wire of fixed length that is held at each end by a robotic gripper. Any curve traced by this wire when in static equilibrium is a local solution to a geometric optimal control problem, with boundary conditions that vary with the position and orientation of each gripper. We prove that the set of all local solutions to this problem over all possible boundary conditions is a smooth manifold of finite dimension that can be parameterized by a single chart. We show that this chart makes it easy to implement a sampling-based algorithm for quasi-static manipulation planning. We characterize the performance of such an algorithm with experiments in simulation.
Published in The International Journal of Robotics Research
Consider a thin, flexible wire of fixed length that is held at each end by a robotic gripper. The curve traced by this wire can be described as a local solution to a geometric optimal control problem, with boundary conditions that vary with the position and orientation of each gripper. The set of all local solutions to this problem is the configuration space of the wire under quasi-static manipulation. We will show that this configuration space is a smooth manifold of finite dimension that can be parameterized by a single chart. Working in this chart—rather than in the space of boundary conditions—makes the problem of manipulation planning very easy to solve. Examples in simulation illustrate our approach.
In this paper, we study quasi-static manipulation of a planar kinematic chain with a fixed base in which each joint is a linearly elastic torsional spring. The shape of this chain when in static equilibrium can be represented as the solution to a discretetime optimal control problem, with boundary conditions that vary with the position and orientation of the last link. We prove that the set of all solutions to this problem is a smooth three-manifold that can be parameterized by a single chart. Empirical results in simulation show that straight-line paths in this chart are uniformly more likely to be feasible (as a function of distance) than straightline paths in the space of boundary conditions. These results, which are consistent with an analysis of visibility properties, suggest that the chart we derive is a better choice of space in which to apply a sampling-based algorithm for manipulation planning. We describe such an algorithm and show that it is easy to implement.
This paper presents a control strategy based on model learning for a self-assembled robotic “swimmer”. The swimmer forms when a liquid suspension of ferro-magnetic micro-particles and a non-magnetic bead are exposed to an alternating magnetic field that is oriented perpendicular to the liquid surface. It can be steered by modulating the frequency of the alternating field. We model the swimmer as a unicycle and learn a mapping from frequency to forward speed and turning rate using locally-weighted projection regression. We apply iterative linear quadratic regulation with a receding horizon to track motion primitives that could be used for path following. Hardware experiments validate our approach.