Visible to the public Biblio

Filters: Author is Headley, William C.  [Clear All Filters]
2021-06-30
Wong, Lauren J., Altland, Emily, Detwiler, Joshua, Fermin, Paolo, Kuzin, Julia Mahon, Moeliono, Nathan, Abdalla, Abdelrahman Said, Headley, William C., Michaels, Alan J..  2020.  Resilience Improvements for Space-Based Radio Frequency Machine Learning. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—5.
Recent work has quantified the degradations that occur in convolutional neural nets (CNN) deployed in harsh environments like space-based image or radio frequency (RF) processing applications. Such degradations yield a robust correlation and causality between single-event upset (SEU) induced errors in memory weights of on-orbit CNN implementations. However, minimal considerations have been given to how the resilience of CNNs can be improved algorithmically as opposed to via enhanced hardware. This paper focuses on RF-processing CNNs and performs an in-depth analysis of applying software-based error detection and correction mechanisms, which may subsequently be combined with protections of radiation-hardened processor platforms. These techniques are more accessible for low cost smallsat platforms than ruggedized hardware. Additionally, methods for minimizing the memory and computational complexity of the resulting resilience techniques are identified. Combined with periodic scrubbing, the resulting techniques are shown to improve expected lifetimes of CNN-based RF-processing algorithms by several orders of magnitude.
DelVecchio, Matthew, Flowers, Bryse, Headley, William C..  2020.  Effects of Forward Error Correction on Communications Aware Evasion Attacks. 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. :1—7.
Recent work has shown the impact of adversarial machine learning on deep neural networks (DNNs) developed for Radio Frequency Machine Learning (RFML) applications. While these attacks have been shown to be successful in disrupting the performance of an eavesdropper, they fail to fully support the primary goal of successful intended communication. To remedy this, a communications-aware attack framework was recently developed that allows for a more effective balance between the opposing goals of evasion and intended communication through the novel use of a DNN to intelligently create the adversarial communication signal. Given the near ubiquitous usage of for-ward error correction (FEC) coding in the majority of deployed systems to correct errors that arise, incorporating FEC in this framework is a natural extension of this prior work and will allow for improved performance in more adverse environments. This work therefore provides contributions to the framework through improved loss functions and design considerations to incorporate inherent knowledge of the usage of FEC codes within the transmitted signal. Performance analysis shows that FEC coding improves the communications aware adversarial attack even if no explicit knowledge of the coding scheme is assumed and allows for improved performance over the prior art in balancing the opposing goals of evasion and intended communications.