Biblio
Filters: Author is Obaidat, Muath [Clear All Filters]
Optimizing System-on-Chip Performance Using AI and SDN: Approaches and Challenges. 2022 Ninth International Conference on Software Defined Systems (SDS). :1—8.
.
2022. The advancement of modern multimedia and data-intensive classes of applications demands the development of hardware that delivers better performance. Due to the evolution of 5G, Edge-Computing, the Internet of Things, Software-Defined networks, etc., the data produced by the devices such as sensors are increasing. A software-Defined network is a powerful paradigm that is capable of automating networking and cloud computing. Software-Defined Network has controllers, devices, and applications which produce a huge amount of data. The processing of data inside the device as well as between the devices needs a better hardware architecture with more cores to ensure speedy performance. The System-on-Chip approach alone will not be capable to handle this dense core comprised of hardware. We have to blend Network-on-Chip along with System-on-Chip to increase the potential to include more cores capable to handle more threads. Artificial Intelligence, a key enabler in next-generation devices is capable of producing a better architecture design with optimized performance. In this paper, we are discussing and endeavouring how System-on-Chip, Network-on-Chip, Software-Defined Networks, and Artificial Intelligence can be physically, logically, and contextually incorporated to deliver improved computation and networking outcomes.
Blind Attack Flaws in Adaptive Honeypot Strategies. 2021 IEEE World AI IoT Congress (AIIoT). :0491–0496.
.
2021. Adaptive honeypots are being widely proposed as a more powerful alternative to the traditional honeypot model. Just as with typical honeypots, however, one of the most important concerns of an adaptive honeypot is environment deception in order to make sure an adversary cannot fingerprint the honeypot. The threat of fingerprinting hints at a greater underlying concern, however; this being that honeypots are only effective because an adversary does not know that the environment on which they are operating is a honeypot. What has not been widely discussed in the context of adaptive honeypots is that they actually have an inherently increased level of susceptibility to this threat. Honeypots not only bear increased risks when an adversary knows they are a honeypot rather than a native system, but they are only effective as adaptable entities if one does not know that the honeypot environment they are operating on is adaptive as wekk. Thus, if adaptive honeypots become commonplace - or, instead, if attackers even have an inkling that an adaptive honeypot may exist on any given network, a new attack which could develop is a “blind confusion attack”; a form of connection which simply makes an assumption all environments are adaptive honeypots, and instead of attempting to perform a malicious strike on a given entity, opts to perform non-malicious behavior in specified and/or random patterns to confuse an adaptive network's learning.
Two Factor Hash Verification (TFHV): A Novel Paradigm for Remote Authentication. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—4.
.
2020. Current paradigms for client-server authentication often rely on username/password schemes. Studies show such schemes are increasingly vulnerable to heuristic and brute-force attacks. This is either due to poor practices by users such as insecure weak passwords, or insecure systems by server operators. A recurring problem in any system which retains information is insecure management policies for sensitive information, such as logins and passwords, by both hosts and users. Increased processing power on the horizon also threatens the security of many popular hashing algorithms. Furthermore, increasing reliance on applications that exchange sensitive information has resulted in increased urgency. This is demonstrated by a large number of mobile applications being deemed insecure by Open Web Application Security Project (OWASP) standards. This paper proposes a secure alternative technique of authentication that retains the current ecosystem, while minimizes attack vectors without inflating responsibilities on users or server operators. Our proposed authentication scheme uses layered encryption techniques alongside a two-part verification process. In addition, it provides dynamic protection for preventing against common cyber-attacks such as replay and man-in-the-middle attacks. Results show that our proposed authentication mechanism outperform other schemes in terms of deployability and resilience to cyber-attacks, without inflating transaction's speed.