Visible to the public Biblio

Filters: Author is Shi, Qi  [Clear All Filters]
2022-10-16
Bouhafs, Faycal, den Hartog, Frank, Raschella, Alessandro, Mackay, Michael, Shi, Qi, Sinanovic, Sinan.  2020.  Realizing Physical Layer Security in Large Wireless Networks using Spectrum Programmability. 2020 IEEE Globecom Workshops (GC Wkshps. :1–6.
This paper explores a practical approach to securing large wireless networks by applying Physical Layer Security (PLS). To date, PLS has mostly been seen as an information theory concept with few practical implementations. We present an Access Point (AP) selection algorithm that uses PLS to find an AP that offers the highest secrecy capacity to a legitimate user. We then propose an implementation of this algorithm using the novel concept of spectrum programming which extends Software-Defined Networking to the physical and data-link layers and makes wireless network management and control more flexible and scalable than traditional platforms. Our Wi-Fi network evaluation results show that our approach outperforms conventional solutions in terms of security, but at the expense of communication capacity, thus identifying a trade-off between security and performance. These results encourage implementation and extension to further wireless technologies.
2021-07-27
MacDermott, Áine, Carr, John, Shi, Qi, Baharon, Mohd Rizuan, Lee, Gyu Myoung.  2020.  Privacy Preserving Issues in the Dynamic Internet of Things (IoT). 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Convergence of critical infrastructure and data, including government and enterprise, to the dynamic Internet of Things (IoT) environment and future digital ecosystems exhibit significant challenges for privacy and identity in these interconnected domains. There are an increasing variety of devices and technologies being introduced, rendering existing security tools inadequate to deal with the dynamic scale and varying actors. The IoT is increasingly data driven with user sovereignty being essential - and actors in varying scenarios including user/customer, device, manufacturer, third party processor, etc. Therefore, flexible frameworks and diverse security requirements for such sensitive environments are needed to secure identities and authenticate IoT devices and their data, protecting privacy and integrity. In this paper we present a review of the principles, techniques and algorithms that can be adapted from other distributed computing paradigms. Said review will be used in application to the development of a collaborative decision-making framework for heterogeneous entities in a distributed domain, whilst simultaneously highlighting privacy preserving issues in the IoT. In addition, we present our trust-based privacy preserving schema using Dempster-Shafer theory of evidence. While still in its infancy, this application could help maintain a level of privacy and nonrepudiation in collaborative environments such as the IoT.