Biblio
Filters: Author is Ma, Tengchao [Clear All Filters]
Intelligent-Driven Adapting Defense Against the Client-Side DNS Cache Poisoning in the Cloud. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1—6.
.
2020. A new Domain Name System (DNS) cache poisoning attack aiming at clients has emerged recently. It induced cloud users to visit fake web sites and thus reveal information such as account passwords. However, the design of current DNS defense architecture does not formally consider the protection of clients. Although the DNS traffic encryption technology can alleviate this new attack, its deployment is as slow as the new DNS architecture. Thus we propose a lightweight adaptive intelligent defense strategy, which only needs to be deployed on the client without any configuration support of DNS. Firstly, we model the attack and defense process as a static stochastic game with incomplete information under bounded rationality conditions. Secondly, to solve the problem caused by uncertain attack strategies and large quantities of game states, we adopt a deep reinforcement learning (DRL) with guaranteed monotonic improvement. Finally, through the prototype system experiment in Alibaba Cloud, the effectiveness of our method is proved against multiple attack modes with a success rate of 97.5% approximately.
Multi-vNIC Intelligent Mutation: A Moving Target Defense to thwart Client-side DNS Cache Attack. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
.
2020. As massive research efforts are poured into server-side DNS security enhancement in online cloud service platforms, sophisticated APTs tend to develop client-side DNS attacks, where defenders only have limited resources and abilities. The collaborative DNS attack is a representative newest client-side paradigm to stealthily undermine user cache by falsifying DNS responses. Different from existing static methods, in this paper, we propose a moving target defense solution named multi-vNIC intelligent mutation to free defenders from arduous work and thwart elusive client-side DNS attack in the meantime. Multiple virtual network interface cards are created and switched in a mutating manner. Thus attackers have to blindly guess the actual NIC with a high risk of exposure. Firstly, we construct a dynamic game-theoretic model to capture the main characteristics of both attacker and defender. Secondly, a reinforcement learning mechanism is developed to generate adaptive optimal defense strategy. Experiment results also highlight the security performance of our defense method compared to several state-of-the-art technologies.