Visible to the public Biblio

Filters: Author is Liu, Jieling  [Clear All Filters]
2021-12-20
Liu, Jieling, Wang, Zhiliang, Yang, Jiahai, Wang, Bo, He, Lin, Song, Guanglei, Liu, Xinran.  2021.  Deception Maze: A Stackelberg Game-Theoretic Defense Mechanism for Intranet Threats. ICC 2021 - IEEE International Conference on Communications. :1–6.

The intranets in modern organizations are facing severe data breaches and critical resource misuses. By reusing user credentials from compromised systems, Advanced Persistent Threat (APT) attackers can move laterally within the internal network. A promising new approach called deception technology makes the network administrator (i.e., defender) able to deploy decoys to deceive the attacker in the intranet and trap him into a honeypot. Then the defender ought to reasonably allocate decoys to potentially insecure hosts. Unfortunately, existing APT-related defense resource allocation models are infeasible because of the neglect of many realistic factors.In this paper, we make the decoy deployment strategy feasible by proposing a game-theoretic model called the APT Deception Game to describe interactions between the defender and the attacker. More specifically, we decompose the decoy deployment problem into two subproblems and make the problem solvable. Considering the best response of the attacker who is aware of the defender’s deployment strategy, we provide an elitist reservation genetic algorithm to solve this game. Simulation results demonstrate the effectiveness of our deployment strategy compared with other heuristic strategies.

2021-08-17
Song, Guanglei, He, Lin, Wang, Zhiliang, Yang, Jiahai, Jin, Tao, Liu, Jieling, Li, Guo.  2020.  Towards the Construction of Global IPv6 Hitlist and Efficient Probing of IPv6 Address Space. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). :1–10.
Fast IPv4 scanning has made sufficient progress in network measurement and security research. However, it is infeasible to perform brute-force scanning of the IPv6 address space. We can find active IPv6 addresses through scanning candidate addresses generated by the state-of-the-art algorithms, whose probing efficiency of active IPv6 addresses, however, is still very low. In this paper, we aim to improve the probing efficiency of IPv6 addresses in two ways. Firstly, we perform a longitudinal active measurement study over four months, building a high-quality dataset called hitlist with more than 1.3 billion IPv6 addresses distributed in 45.2k BGP prefixes. Different from previous work, we probe the announced BGP prefixes using a pattern-based algorithm, which makes our dataset overcome the problems of uneven address distribution and low active rate. Secondly, we propose an efficient address generation algorithm DET, which builds a density space tree to learn high-density address regions of the seed addresses in linear time and improves the probing efficiency of active addresses. On the public hitlist and our hitlist, we compare our algorithm DET against state-of-the-art algorithms and find that DET increases the de-aliased active address ratio by 10%, and active address (including aliased addresses) ratio by 14%, by scanning 50 million addresses.