Visible to the public Biblio

Filters: Author is Li, Zelong  [Clear All Filters]
2022-02-04
Biswas, Ananda, Dee, Timothy M., Guo, Yunxi, Li, Zelong, Tyagi, Akhilesh.  2021.  Multi-Granularity Control Flow Anomaly Detection with Hardware Counters. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). :449—454.
Hardware counters are included in processors to count microarchitecture level events affecting performance. When control flow anomalies caused by attacks such as buffer overflow or return oriented programming (ROP) occur, they leave a microarchitectural footprint. Hardware counters reflect such footprints to flag control flow anomalies. This paper is geared towards buffer overflow and ROP control flow anomaly detection in embedded programs. The targeted program entities are main event loops and task/event handlers. Embedded systems also have enhanced need for variable anomaly detection time in order to meet the system response time requirements. We propose a novel repurposing of Patt-Yeh two level branch predictor data structure for abstracting/hashing HW counter signatures to support such variable anomaly detection times. The proposed anomaly detection mechanism is evaluated on some generic benchmark programs and ArduPilot - a popular autopilot software. Experimental evaluation encompasses both Intel X86 and ARM Cortex M processors. DWT within Cortex M provides sufficiently interesting program level event counts to capture these control flow anomalies. We are able to achieve 97-99%+ accuracy with 1-10 micro-second time overhead per anomaly check.
2021-09-16
Biswas, Ananda, Li, Zelong, Tyagi, Akhilesh.  2020.  Control Flow Integrity in IoT Devices with Performance Counters and DWT. 2020 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :171–176.
IoT devices are open to traditional control flow integrity (CFI) attacks resulting from buffer overflow and return-oriented programming like techniques. They often have limited computational capacity ruling out many of the traditional heavy-duty software countermeasures. In this work, we deploy hardware/software solutions to detect CFI attacks. Some of the medium capability IoT devices, for example based on Raspberry Pi, contain ARM Cortex A-53 (Pi 3) or Cortex A-73 (Pi 4) processors. These processors include hardware counters to count microarchitecture level events affecting performance. Lighter weight IoT devices, say based on ARM Cortex M4 or M7, include DWT (Debug, Watch & Trace) module. When control flow anomalies caused by attacks such as buffer overflow or return oriented programming (ROP) occur, they leave a microarchitectural footprint. Hardware counters reflect such footprints to flag control flow anomalies. This paper is geared towards buffer overflow and ROP control flow anomaly detection in embedded programs. The targeted program entities are main event loops and task/event handlers. The proposed anomaly detection mechanism is evaluated on ArduPilot [1] - a popular autopilot software on a Raspberry Pi 3 with PMU and DWT. A self-navigation program is evaluated on an iCreate Roomba platform with an ARM Cortex M4 processor with DWT only. We are able to achieve 97-99%+ accuracy with 1-10 micro-second time overhead per control flow anomaly check.