Biblio
Filters: Author is Ampel, Benjamin [Clear All Filters]
Smart Vulnerability Assessment for Scientific Cyberinfrastructure: An Unsupervised Graph Embedding Approach. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–6.
.
2020. The accelerated growth of computing technologies has provided interdisciplinary teams a platform for producing innovative research at an unprecedented speed. Advanced scientific cyberinfrastructures, in particular, provide data storage, applications, software, and other resources to facilitate the development of critical scientific discoveries. Users of these environments often rely on custom developed virtual machine (VM) images that are comprised of a diverse array of open source applications. These can include vulnerabilities undetectable by conventional vulnerability scanners. This research aims to identify the installed applications, their vulnerabilities, and how they vary across images in scientific cyberinfrastructure. We propose a novel unsupervised graph embedding framework that captures relationships between applications, as well as vulnerabilities identified on corresponding GitHub repositories. This embedding is used to cluster images with similar applications and vulnerabilities. We evaluate cluster quality using Silhouette, Calinski-Harabasz, and Davies-Bouldin indices, and application vulnerabilities through inspection of selected clusters. Results reveal that images pertaining to genomics research in our research testbed are at greater risk of high-severity shell spawning and data validation vulnerabilities.