Biblio
Filters: Author is Charles, Subodha [Clear All Filters]
Lightweight Encryption Using Chaffing and Winnowing with All-or-Nothing Transform for Network-on-Chip Architectures. 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :170–180.
.
2021. Network-on-Chip (NoC) fulfills the communication requirements of modern System-on-Chip (SoC) architectures. Due to the resource-constrained nature of NoC-based SoCs, it is a major challenge to secure on-chip communication against eavesdropping attacks using traditional encryption methods. In this paper, we propose a lightweight encryption technique using chaffing and winnowing (C&W) with all-or-nothing transform (AONT) that benefits from the unique NoC traffic characteristics. Our experimental results demonstrate that our proposed encryption technique provides the required security with significantly less area and energy overhead compared to the state-of-the-art approaches.
Lightweight Anonymous Routing in NoC based SoCs. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :334–337.
.
2020. System-on-Chip (SoC) supply chain is widely acknowledged as a major source of security vulnerabilities. Potentially malicious third-party IPs integrated on the same Network-on-Chip (NoC) with the trusted components can lead to security and trust concerns. While secure communication is a well studied problem in computer networks domain, it is not feasible to implement those solutions on resource-constrained SoCs. In this paper, we present a lightweight anonymous routing protocol for communication between IP cores in NoC based SoCs. Our method eliminates the major overhead associated with traditional anonymous routing protocols while ensuring that the desired security goals are met. Experimental results demonstrate that existing security solutions on NoC can introduce significant (1.5X) performance degradation, whereas our approach provides the same security features with minor (4%) impact on performance.
Securing Network-on-Chip Using Incremental Cryptography. 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :168–175.
.
2020. Network-on-chip (NoC) has become the standard communication fabric for on-chip components in modern System-on-chip (SoC) designs. Since NoC has visibility to all communications in the SoC, it has been one of the primary targets for security attacks. While packet encryption can provide secure communication, it can introduce unacceptable energy and performance overhead due to the resource-constrained nature of SoC designs. In this paper, we propose a lightweight encryption scheme that is implemented on the network interface. Our approach improves the performance of encryption without compromising security using incremental cryptography, which exploits the unique NoC traffic characteristics. Experimental results demonstrate that our proposed approach significantly (up to 57%, 30% on average) reduces the encryption time compared to traditional approaches with negligible (less than 2%) impact on area overhead.