Visible to the public Biblio

Filters: Author is Wang, Ben  [Clear All Filters]
2022-05-10
Wang, Ben, Chu, Hanting, Zhang, Pengcheng, Dong, Hai.  2021.  Smart Contract Vulnerability Detection Using Code Representation Fusion. 2021 28th Asia-Pacific Software Engineering Conference (APSEC). :564–565.
At present, most smart contract vulnerability detection use manually-defined patterns, which is time-consuming and far from satisfactory. To address this issue, researchers attempt to deploy deep learning techniques for automatic vulnerability detection in smart contracts. Nevertheless, current work mostly relies on a single code representation such as AST (Abstract Syntax Tree) or code tokens to learn vulnerability characteristics, which might lead to incompleteness of learned semantics information. In addition, the number of available vulnerability datasets is also insufficient. To address these limitations, first, we construct a dataset covering most typical types of smart contract vulnerabilities, which can accurately indicate the specific row number where a vulnerability may exist. Second, for each single code representation, we propose a novel way called AFS (AST Fuse program Slicing) to fuse code characteristic information. AFS can fuse the structured information of AST with program slicing information and detect vulnerabilities by learning new vulnerability characteristic information.
2022-02-10
Wang, Qianqian, Wang, Ben, Yu, Jiangfan, Schweizer, Kathrin, Nelson, Bradley J., Zhang, Li.  2020.  Reconfigurable Magnetic Microswarm for Thrombolysis under Ultrasound Imaging. 2020 IEEE International Conference on Robotics and Automation (ICRA). :10285–10291.
We propose thrombolysis using a magnetic nanoparticle microswarm with tissue plasminogen activator (tPA) under ultrasound imaging. The microswarm is generated in blood using an oscillating magnetic field and can be navigated with locomotion along both the long and short axis. By modulating the input field, the aspect ratio of the microswarm can be reversibly tuned, showing the ability to adapt to different confined environments. Simulation results indicate that both in-plane and out-of-plane fluid convection are induced around the microswarm, which can be further enhanced by tuning the aspect ratio of the microswarm. Under ultrasound imaging, the microswarm is navigated in a microchannel towards a blood clot and deformed to obtain optimal lysis. Experimental results show that the lysis rate reaches -0.1725 ± 0.0612 mm3/min in the 37°C blood environment under the influence of the microswarm-induced fluid convection and tPA. The lysis rate is enhanced 2.5-fold compared to that without the microswarm (-0.0681 ± 0.0263 mm3/min). Our method provides a new strategy to increase the efficiency of thrombolysis by applying microswarm-induced fluid convection, indicating that swarming micro/nanorobots have the potential to act as effective tools towards targeted therapy.
ISSN: 2577-087X