Biblio
Filters: Author is Tealane, Marko [Clear All Filters]
Cyber Attacks on Protective Relays in Digital Substations and Impact Analysis. 2020 8th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems. :1–6.
.
2020. Power systems automation and communication standards are crucial for the transition of the conventional power system towards a smart grid. The IEC 61850 standard is widely used for substation automation and protection. It enables real-time communication and data exchange between critical substation automation devices. IEC 61850 serves as the foundation for open communication and data exchange for digital substations of the smart grid. However, IEC 61850 has cyber security vulnerabilities that can be exploited with a man-in-the-middle attack. Such coordinated cyber attacks against the protection system in digital substations can disconnect generation and transmission lines, causing cascading failures. In this paper, we demonstrate a cyber attack involving the Generic Object-Oriented Substation Event (GOOSE) protocol of IEC 61850. This is achieved by exploiting the cyber security vulnerabilities in the protocol and injecting spoofed GOOSE data frames into the substation communication network at the bay level. The cyber attack leads to tripping of multiple protective relays in the power grid, eventually resulting in a blackout. The attack model and impact on system dynamics are verified experimentally through hardware-in-the-loop simulations using commercial relays and Real-Time Digital Simulator (RTDS).
Cyber Attacks on Power System Automation and Protection and Impact Analysis. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :247–254.
.
2020. Power system automation and communication standards are spearheading the power system transition towards a smart grid. IEC 61850 is one such standard, which is widely used for substation automation and protection. It enables real-time communication and data exchange between critical substation automation and protection devices within digital substations. However, IEC 61850 is not cyber secure. In this paper, we demonstrate the dangerous implications of not securing IEC 61850 standard. Cyber attacks may exploit the vulnerabilities of the Sampled Values (SV) and Generic Object-Oriented Substation Event (GOOSE) protocols of IEC 61850. The cyber attacks may be realised by injecting spoofed SV and GOOSE data frames into the substation communication network at the bay level. We demonstrate that such cyber attacks may lead to obstruction or tripping of multiple protective relays. Coordinated cyber attacks against the protection system in digital substations may cause generation and line disconnections, triggering cascading failures in the power grid. This may eventually result in a partial or complete blackout. The attack model, impact on system dynamics and cascading failures are veri ed experimentally through a proposed cyber-physical experimental framework that closely resembles real-world conditions within a digital substation, including Intelligent Electronic Devices (IEDs) and protection schemes. It is implemented through Hardware-in-the-Loop (HIL) simulations of commercial relays with a Real-Time Digital Simulator (RTDS).