Visible to the public Biblio

Filters: Author is Murugesan, Raja Kumar  [Clear All Filters]
2022-04-01
Muzammal, Syeda Mariam, Murugesan, Raja Kumar, Jhanjhi, NZ.  2021.  Introducing Mobility Metrics in Trust-based Security of Routing Protocol for Internet of Things. 2021 National Computing Colleges Conference (NCCC). :1—5.

Internet of Things (IoT) is flourishing in several application areas, such as smart cities, smart factories, smart homes, smart healthcare, etc. With the adoption of IoT in critical scenarios, it is crucial to investigate its security aspects. All the layers of IoT are vulnerable to severely disruptive attacks. However, the attacks in IoT Network layer have a high impact on communication between the connected objects. Routing in most of the IoT networks is carried out by IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL). RPL-based IoT offers limited protection against routing attacks. A trust-based approach for routing security is suitable to be integrated with IoT systems due to the resource-constrained nature of devices. This research proposes a trust-based secure routing protocol to provide security against packet dropping attacks in RPL-based IoT networks. IoT networks are dynamic and consist of both static and mobile nodes. Hence the chosen trust metrics in the proposed method also include the mobility-based metrics for trust evaluation. The proposed solution is integrated into RPL as a modified objective function, and the results are compared with the default RPL objective function, MRHOF. The analysis and evaluation of the proposed protocol indicate its efficacy and adaptability in a mobile IoT environment.

2021-11-08
Muzammal, Syeda Mariam, Murugesan, Raja Kumar, Jhanjhi, Noor Zaman, Jung, Low Tang.  2020.  SMTrust: Proposing Trust-Based Secure Routing Protocol for RPL Attacks for IoT Applications. 2020 International Conference on Computational Intelligence (ICCI). :305–310.
With large scale generation and exchange of data between IoT devices and constrained IoT security to protect data communication, it becomes easy for attackers to compromise data routes. In IoT networks, IPv6 Routing Protocol is the de facto routing protocol for Low Power and Lossy Networks (RPL). RPL offers limited security against several RPL-specific and WSN-inherited attacks in IoT applications. Additionally, IoT devices are limited in memory, processing, and power to operate properly using the traditional Internet and routing security solutions. Several mitigation schemes for the security of IoT networks and routing, have been proposed including Machine Learning-based, IDS-based, and Trust-based approaches. In existing trust-based methods, mobility of nodes is not considered at all or its insufficient for mobile sink nodes, specifically for security against RPL attacks. This research work proposes a conceptual design, named SMTrust, for security of routing protocol in IoT, considering the mobility-based trust metrics. The proposed solution intends to provide defense against popular RPL attacks, for example, Blackhole, Greyhole, Rank, Version Number attacks, etc. We believe that SMTrust shall provide better network performance for attacks detection accuracy, mobility and scalability as compared to existing trust models, such as, DCTM-RPL and SecTrust-RPL. The novelty of our solution is that it considers the mobility metrics of the sensor nodes as well as the sink nodes, which has not been addressed by the existing models. This consideration makes it suitable for mobile IoT environment. The proposed design of SMTrust, as secure routing protocol, when embedded in RPL, shall ensure confidentiality, integrity, and availability among the sensor nodes during routing process in IoT communication and networks.