Visible to the public Biblio

Filters: Author is Xu, Qiwei  [Clear All Filters]
2023-02-03
Li, Weijian, Li, Chengyan, Xu, Qiwei, Yin, Keting.  2022.  A Novel Distributed CA System Based on Blockchain. 2022 IEEE 10th International Conference on Information, Communication and Networks (ICICN). :710–716.
In the PKI-CA system with a traditional trust model based on trust chain and centralized private key management, there are some problems with issuing certificates illegally, denying issued certificates, tampering with issuance log, and leaking certificate private key due to the excessive power of a single CA. A novel distributed CA system based on blockchain was constructed to solve the problems. The system applied blockchain and smart contract to coordinate the certificate issuing process, and stored the issuing process logs and information used to verify certificates on the blockchain. It guaranteed the non-tamperability and non-repudiation of logs and information. Aiming at the disadvantage of easy leakage of private keys in centralized management mode, the system used the homomorphism of elliptic encryption algorithm, CPK and transformation matrix to generate and store user private keys safely and distributively. Experimental analysis showed that the system can not only overcome the drawbacks of the traditional PKI-CA system, but also issue certificates quickly and save as much storage as possible to store certificate private keys.
2021-12-20
Cheng, Zhihao, Xu, Qiwei, Long, Sheng, Zhang, Yixuan.  2021.  Thrust Force Ripple Optimization of MEMS Permanent Magnet Linear Motor Based on Harmonic Current Injection. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–6.
This paper presents a method optimizing the thrust force of a Micro Electro Mechanical System (MEMS) Permanent Magnet Linear Motor, based on harmonic current injection. Fourier decomposition is implemented to the air gap flux density of the motor to derive the fitting expression of the thrust force dependent to exciting current. Through analyzing the thrust force ripple of sinusoidal current excitement, the paper comes up with the strategy of harmonic current injection to eliminate the ripple component in the thrust force waveform. Mathematical demonstration is given that injecting harmonic current can totally eliminate the ripple caused by odd component of vertical air gap magnetic induction intensity. Simulation verification is implemented based on the 3rd and 7th harmonic injection control strategy, proving that the method is feasible for the thrust ripple is reduced to 4.3% of the value before optimazation. Experimental results lead to the consistent conclusion that the strategy shows good steady-state and dynamic performance.