Biblio
Filters: Author is Okabe, Yasuo [Clear All Filters]
Precursory Analysis of Attack-Log Time Series by Machine Learning for Detecting Bots in CAPTCHA. 2021 International Conference on Information Networking (ICOIN). :295—300.
.
2021. CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is commonly utilized as a technology for avoiding attacks to Web sites by bots. State-of-the-art CAPTCHAs vary in difficulty based on the client's behavior, allowing for efficient bot detection without sacrificing simplicity. In this research, we focus on detecting bots by supervised machine learning from access-log time series in the past. We have analysed access logs to several Web services which are using a commercial cloud-based CAPTCHA service, Capy Puzzle CAPTCHA. Experiments show that bot detection in attacks over a month can be performed with high accuracy by precursory analysis of the access log in only the first day as training data. In addition, we have manually analyzed the data that are found to be False Positive in the discrimination results, and it is found that the proposed model actually detects access by bots, which had been overlooked in the first-stage manual discrimination of flags in preparation of training data.
Zero Trust Federation: Sharing Context under User Control towards Zero Trust in Identity Federation. 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (PerCom Workshops). :514–519.
.
2021. Perimeter models, which provide access control for protecting resources on networks, make authorization decisions using the source network of access requests as one of critical factors. However, such models are problematic because once a network is intruded, the attacker gains access to all of its resources. To overcome the above problem, a Zero Trust Network (ZTN) is proposed as a new security model in which access control is performed by authenticating users who request access and then authorizing such requests using various information about users and devices called contexts. To correctly make authorization decisions, this model must take a large amount of various contexts into account. However, in some cases, an access control mechanism cannot collect enough context to make decisions, e.g., when an organization that enforces access control joins the identity federation and uses systems operated by other organizations. This is because the contexts collected using the systems are stored in individual systems and no federation exists for sharing contexts. In this study, we propose the concept of a Zero Trust Federation (ZTF), which applies the concept of ZTN under the identity federation, and a method for sharing context among systems of organizations. Since context is sensitive to user privacy, we also propose a mechanism for sharing contexts under user control. We also verify context sharing by implementing a ZTF prototype.