Visible to the public Biblio

Filters: Author is Li, Nige  [Clear All Filters]
2023-02-17
Li, Nige, Zhou, Peng, Wang, Tengyan, Chen, Jingnan.  2022.  Control flow integrity check based on LBR register in power 5G environment. 2022 China International Conference on Electricity Distribution (CICED). :1211–1216.
This paper proposes a control flow integrity checking method based on the LBR register: through an analysis of the static target program loaded binary modules, gain function attributes such as borders and build the initial transfer of legal control flow boundary, real-time maintenance when combined with the dynamic execution of the program flow of control transfer record, build a complete profile control flow transfer security; Get the call location of /bin/sh or system() in the program to build an internal monitor for control-flow integrity checks. In the process of program execution, on the one hand, the control flow transfer outside the outline is judged as the abnormal control flow transfer with attack threat; On the other hand, abnormal transitions across the contour are picked up by an internal detector. In this method, by identifying abnormal control flow transitions, attacks are initially detected before the attack code is executed, while some attacks that bypass the coarse-grained verification of security profile are captured by the refined internal detector of control flow integrity. This method reduces the cost of control flow integrity check by using the safety profile analysis of coarse-grained check. In addition, a fine-grained shell internal detector is inserted into the contour to improve the safety performance of the system and achieve a good balance between performance and efficiency.
2022-08-26
Zeng, Rong, Li, Nige, Zhou, Xiaoming, Ma, Yuanyuan.  2021.  Building A Zero-trust Security Protection System in The Environment of The Power Internet of Things. 2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). :557–560.
With the construction of power information network, the power grid has built a security protection system based on boundary protection. However, with the continuous advancement of the construction of the power Internet of Things, a large number of power Internet of Things terminals need to connect to the power information network through the public network, which have an impact on the existing security protection system of the power grid. This article analyzes the characteristics of the border protection model commonly used in network security protection. Aiming at the lack of security protection capabilities of this model, a zero-trust security architecture-based power Internet of Things network security protection model is proposed. Finally, this article analyzes and studies the application of zero trust in the power Internet of Things.
2021-12-21
Chen, Lu, Dai, Zaojian, CHEN, Mu, Li, Nige.  2021.  Research on the Security Protection Framework of Power Mobile Internet Services Based on Zero Trust. 2021 6th International Conference on Smart Grid and Electrical Automation (ICSGEA). :65–68.
Under the background of increasingly severe security situation, the new working mode of power mobile internet business anytime and anywhere has greatly increased the complexity of network interaction. At the same time, various means of breaking through the boundary protection and moving laterally are emerging in an endless stream. The existing boundary-based mobility The security protection architecture is difficult to effectively respond to the current complex and diverse network attacks and threats, and faces actual combat challenges. This article first analyzes the security risks faced by the existing power mobile Internet services, and conducts a collaborative analysis of the key points of zero-trust based security protection from multiple perspectives such as users, terminals, and applications; on this basis, from identity security authentication, continuous trust evaluation, and fine-grained access The dimension of control, fine-grained access control based on identity trust, and the design of a zero-trust-based power mobile interconnection business security protection framework to provide theoretical guidance for power mobile business security protection.