Visible to the public Biblio

Filters: Author is Watkins, Lanier  [Clear All Filters]
2022-02-04
Cervini, James, Rubin, Aviel, Watkins, Lanier.  2021.  A Containerization-Based Backfit Approach for Industrial Control System Resiliency. 2021 IEEE Security and Privacy Workshops (SPW). :246–252.
Many industrial control systems (ICS) are reliant upon programmable logic controllers (PLCs) for their operations. As ICS and PLCs are increasingly targeted by cyber-attacks, research facilitating the resiliency of their physical processes is imperative. This paper proposes an approach which leverages PLC containerization, input/output (I/O) multiplexing, and orchestration to respond to cyber incidents and ensure continuity of critical processes. A proofof-concept capability was developed and evaluated on live ICS testbed environments. The experimental results indicate the approach is viable for control applications with soft real-time requirements.
2022-01-25
Rouff, Christopher, Watkins, Lanier, Sterritt, Roy, Hariri, Salim.  2021.  SoK: Autonomic Cybersecurity - Securing Future Disruptive Technologies. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :66—72.
This paper is a systemization of knowledge of autonomic cybersecurity. Disruptive technologies, such as IoT, AI and autonomous systems, are becoming more prevalent and often have little or no cybersecurity protections. This lack of security is contributing to the expanding cybersecurity attack surface. The autonomic computing initiative was started to address the complexity of administering complex computing systems by making them self-managing. Autonomic systems contain attributes to address cyberattacks, such as self-protecting and self-healing that can secure new technologies. There has been a number of research projects on autonomic cybersecurity, with different approaches and target technologies, many of them disruptive. This paper reviews autonomic computing, analyzes research on autonomic cybersecurity, and provides a systemization of knowledge of the research. The paper concludes with identification of gaps in autonomic cybersecurity for future research.