Visible to the public Biblio

Filters: Author is Shameem Ahamed, Waheeda Syed  [Clear All Filters]
2022-01-25
Shameem Ahamed, Waheeda Syed, Zavarsky, Pavol, Swar, Bobby.  2021.  Security Audit of Docker Container Images in Cloud Architecture. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). :202—207.
Containers technology radically changed the ways for packaging applications and deploying them as services in cloud environments. According to the recent report on security predictions of 2020 by Trend Micro, the vulnerabilities in container components deployed with cloud architecture have been one of the top security concerns for development and operations teams in enterprises. Docker is one of the leading container technologies that automate the deployment of applications into containers. Docker Hub is a public repository by Docker for storing and sharing the Docker images. These Docker images are pulled from the Docker Hub repository and the security of images being used from the repositories in any cloud environment could be at risk. Vulnerabilities in Docker images could have a detrimental effect on enterprise applications. In this paper, the focus is on securing the Docker images using vulnerability centric approach (VCA) to detect the vulnerabilities. A set of use cases compliant with the NIST SP 800-190 Application Container Security Guide is developed for audit compliance of Docker container images with the OWASP Container Security Verification Standards (CSVS). In this paper, firs vulnerabilities of Docker container images are identified and assessed using the VCA. Then, a set of use cases to identify presence of the vulnerabilities is developed to facilitate the security audit of the container images. Finally, it is illustrated how the proposed use cases can be mapped with the requirements of the OWASP Container Security Verification Standards. The use cases can serve as a security auditing tool during the development, deployment, and maintenance of cloud microservices applications.