Biblio
Filters: Author is Zhao, Yao [Clear All Filters]
Improved Steganography Based on Referential Cover and Non-symmetric Embedding. 2022 IEEE 5th International Conference on Electronics Technology (ICET). :1202–1206.
.
2022. Minimizing embedding impact model of steganography has good performance for steganalysis detection. By using effective distortion cost function and coding method, steganography under this model becomes the mainstream embedding framework recently. In this paper, to improve the anti-detection performance, a new steganography optimization model by constructing a reference cover is proposed. First, a reference cover is construed by performing a filtering operation on the cover image. Then, by minimizing the residual between the reference cover and the original cover, the optimization function is formulated considering the effect of different modification directions. With correcting the distortion cost of +1 and \_1 modification operations, the stego image obtained by the proposed method is more consistent with the natural image. Finally, by applying the proposed framework to the cost function of the well-known HILL embedding, experimental results show that the anti-detection performance of the proposed method is better than the traditional method.
ISSN: 2768-6515
Adversarial Attack on Fake-Faces Detectors Under White and Black Box Scenarios. 2021 IEEE International Conference on Image Processing (ICIP). :3627–3631.
.
2021. Generative Adversarial Network (GAN) models have been widely used in various fields. More recently, styleGAN and styleGAN2 have been developed to synthesize faces that are indistinguishable to the human eyes, which could pose a threat to public security. But latest work has shown that it is possible to identify fakes using powerful CNN networks as classifiers. However, the reliability of these techniques is unknown. Therefore, in this paper we focus on the generation of content-preserving images from fake faces to spoof classifiers. Two GAN-based frameworks are proposed to achieve the goal in the white-box and black-box. For the white-box, a network without up/down sampling is proposed to generate face images to confuse the classifier. In the black-box scenario (where the classifier is unknown), real data is introduced as a guidance for GAN structure to make it adversarial, and a Real Extractor as an auxiliary network to constrain the feature distance between the generated images and the real data to enhance the adversarial capability. Experimental results show that the proposed method effectively reduces the detection accuracy of forensic models with good transferability.