Visible to the public Biblio

Filters: Author is Kamiyama, Noriaki  [Clear All Filters]
2022-10-06
Fahrianto, Feri, Kamiyama, Noriaki.  2021.  The Dual-Channel IP-to-NDN Translation Gateway. 2021 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN). :1–2.
The co-existence between Internet Protocol (IP) and Named-Data Networking (NDN) protocol is inevitable during the transition period. We propose a privacy-preserving translation method between IP and NDN called the dual-channel translation gateway. The gateway provides two different channels dedicated to the interest and the data packet to translate the IP to the NDN protocol and vice versa. Additionally, the name resolution table is provided at the gateway that binds an IP packet securely with a prefix name. Moreover, we compare the dual-channel gateway performance with the encapsulation gateway.
2022-05-24
Nakamura, Ryo, Kamiyama, Noriaki.  2021.  Proposal of Keyword-Based Information-Centric Delay-Tolerant Network. 2021 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR 2021). :1–7.
In this paper, we focus on Information-Centric Delay-Tolerant Network (ICDTN), which incorporates the communication paradigm of Information-Centric Networking (ICN) into Delay-Tolerant Networking (DTN). Conventional ICNs adopt a naming scheme that names the content with the content identifier. However, a past study proposed an alternative naming scheme that describes the name of content with the content descriptor. We believe that, in ICDTN, it is more suitable to utilize the approach using the content descriptor. In this paper, we therefore propose keyword-based ICDTN that resolves content requests and deliveries contents based on keywords, i.e., content descriptor, in the request and response messages.
2022-01-31
Ashihara, Takakazu, Kamiyama, Noriaki.  2021.  Detecting Cache Pollution Attacks Using Bloom Filter. 2021 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN). :1—6.
To provide web browsing and video streaming services with desirable quality, cache servers have been widely used to deliver digital data to users from locations close to users. For example, in the MEC (mobile edge computing), cache memories are provided at base stations of 5G cellular networks to reduce the traffic load in the backhaul networks. Cache servers are also connected to many edge routers in the CDN (content delivery network), and they are provided at routers in the ICN (information-centric networking). However, the cache pollution attack (CPA) which degrades the cache hit ratio by intentionally sending many requests to non-popular contents will be a serious threat in the cache networks. Quickly detecting the CPA hosts and protecting the cache servers is important to effectively utilize the cache resources. Therefore, in this paper, we propose a method of accurately detecting the CPA hosts using a limited amount of memory resources. The proposed method is based on a Bloom filter using the combination of identifiers of host and content as keys. We also propose to use two Bloom filters in parallel to continuously detect CPA hosts. Through numerical evaluations, we show that the proposed method suppresses the degradation of the cache hit ratio caused by the CPA while avoiding the false identification of legitimate hosts.